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ABSTRACT

Advances in artificial intelligence (AI) have made it increasingly
applicable to supplement expert’s decision-making in the form of a
decision support system on various tasks. For instance, an Al-based
system can provide therapists quantitative analysis on patient’s
status to improve practices of rehabilitation assessment. However,
there is limited knowledge on the potential of these systems. In this
paper, we present the development and evaluation of an interactive
Al-based system that supports collaborative decision making with
therapists for rehabilitation assessment. This system automatically
identifies salient features of assessment to generate patient-specific
analysis for therapists, and tunes with their feedback. In two evalu-
ations with therapists, we found that our system supports thera-
pists significantly higher agreement on assessment (0.71 average
F1-score) than a traditional system without analysis (0.66 average
Fl-score, p < 0.05). After tuning with therapist’s feedback, our sys-
tem significantly improves its performance from 0.8377 to 0.9116
average F1-scores (p < 0.01). This work discusses the potential of a
human-AlI collaborative system to support more accurate decision
making while learning from each other’s strengths.
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1 INTRODUCTION

Advanced artificial intelligence (AI) techniques have the poten-
tial to supplement and improve decision making on various high-
stake contexts (e.g. health [7, 11, 12, 35], criminal justice [26]). One
promising application is a technology-assisted rehabilitation system
[35, 60, 62] that supports therapists informed decision making on
the assessment and administration of patients with musculoskeletal
and neurological diseases (e.g. stroke). In current practices, thera-
pists typically rely on clinical tests that involve their direct, visual
observation of patient’s exercise motions to evaluate the status of a
patient and determine interventions [23, 45, 53]. As this process is
time-consuming, therapists infrequently perform this assessment
due to their limited availability [39], Thus, therapists have a lack of
quantitative data on patient’s performance and progress to make
informed decision [6, 24]. With the goal of improving therapist’s
practices in rehabilitation, researchers have explored the feasibility
of decision support systems for rehabilitation, which automatically
monitor and assess patient’s exercise motions using sensors and
machine learning algorithms to generate quantitative analysis [62].

Even if prior work demonstrates the feasibility of rehabilitation
monitoring systems in a laboratory setting [34], the adoption of
these systems in practice still remains a challenge due to a lack of
user-centered designs [7, 12, 27, 64] and the opaqueness of machine
learning algorithms [10, 11, 27, 61]. These systems typically utilize
labeled sensor data and a machine learning algorithm to automati-
cally learn a function for monitoring and assessment on patient’s
exercises [34, 36, 62]. However, even if a complex algorithm is ap-
plied, it is challenging to derive a system that can perfectly replicate
the assessment of a therapist due to diverse physical characteristics
of patients. When systems with complex algorithms make incorrect
predictions on assessment and do not provide any explanations on
its prediction to support therapist’s decision making, these black-
box systems can exacerbate therapist’s user experience, and be
abandoned in practice [10, 11, 27, 29].

In this paper, we focus on studying how a domain expert, thera-
pist and an interactive Al-based system can collaborate with each
other on stroke rehabilitation assessment. Specifically, we develop
and evaluate an interactive approach (Figure 1) that integrates a
machine learning model with a rule-based model from therapists for
collaborative decision making. When a new patient performs an ex-
ercise with the patient’s unaffected and affected sides, this approach
first automatically selects salient kinematic features of assessment
(e.g. joint angle, the trajectory of wrist to the target position, etc.) to
predict the quality of motion and generate patient-specific analysis
on a visualization interface (Figure 2). This patient-specific analysis
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includes the predicted quality of motion on three performance com-
ponents (i.e. ‘Range of Motion’, ‘Smoothness’, and ‘Compensation’)
and the comparison between unaffected and affected sides with the
most salient features. After reviewing this patient-specific analysis,
a therapist can understand the capability of a system and provide
feedback (e.g. feature relevance) to refine an imperfect system.
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Figure 1: Flow diagram of an interactive approach for hu-
man and artificial intelligence (AI) collaborative decision
making on rehabilitation assessment: an Al-based system
automatically selects kinematic features of assessment to
predict the quality of motion and generate patient-specific
analysis on the visualization interface. A therapist can
review this summarized, patient-specific analysis to im-
prove understanding on patient’s performance and provide
feature-based feedback to tune a model for personalized as-
sessment
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For the implementation of our approach, we utilized the dataset
of three rehabilitation exercises from 15 post-stroke and 11 healthy
participants with the corresponding annotations by therapists. With
this dataset, we applied reinforcement learning [37, 57] to identify
the most salient features of assessment and learn a machine learn-
ing model to predict the quality of motion on patient’s exercises
using leave-one-patient-out cross-validation. In addition, we con-
ducted a semi-structured interview with therapists to elicit their
knowledge on stroke rehabilitation assessment into 15 independent
if-then rules for the initial development of a rule-based model. We
utilized a weighted average ensemble technique [4, 36] to combine
machine learning and rule-based models into a hybrid model (HM)
for assessment.

After implementing our approach, we conducted two user stud-
ies with therapists to investigate how a therapist and an Al-based
system can work together on rehabilitation assessment. Our re-
sults show that therapists prefer the usage of our Al-based system
with patient-specific analysis to that of a traditional system with-
out any analysis. Specifically, the patient-specific analysis of our
Al-based system empowers therapists to have richer understand-
ing of patient’s performance with quantitative measurements and
supports them to achieve significantly higher agreement on assess-
ment (i.e. 0.71 average Fl-score) than the traditional system (i.e.
0.66 average F1-score) (p < 0.05). In addition, therapists can provide
feature-based feedback to refine an imperfect Al-based system that
improves its performance of replicating the therapist’s assessment
from 0.8377 to 0.9116 average F1-score on three exercises (p < 0.01).

The main contribution of this work is to present an interactive
approach that supports collaboration between an expert and an
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Al-based system and evaluate how both an expert and an Al-based
system can complement each other for more accurate decision mak-
ing on rehabilitation assessment. In contrast to most related work
of rehabilitation monitoring systems that focuses on improving the
performance of monitoring and understanding an activity with a
complex deep learning model [19, 34, 46, 49], our work highlights
the importance of creating a human-centered, interactive approach
for better deployment in practice. In addition, our work advances
knowledge on the effect and feasibility of a human Al collaborative
system for clinical decision making.

2 RELATED WORK

2.1 Towards Human-AI Collaboration

As the performance of Al systems has rapidly improved to match or
exceed that of human experts [55], people have considered substi-
tuting human decision making with predictions of these systems in
a variety of applications. However, deploying fully autonomous Al
systems remains disruptive, dangerous, and unethical in high-stake
contexts [50]. Instead, the need of involving a human to interact
with Al systems has received increasing attention [1, 11, 12, 37, 59].
Amershi et al. [2] propose design guidelines for human-Al interac-
tion through a user study with 49 design practitioners. Shneider-
man [52] presents ethical principles and practical steps for human-
centered Al systems. Building upon these guidelines, we focus on
exploring human-AI collaboration in the high-stakes context of
clinical decision making.

2.2 Human-Centered Clinical Decision
Support Systems

Clinical decision supports systems [44] have been considered as
promising ways that can provide medical practitioners computa-
tional information on the status of a patient to improve their deci-
sion making on various disciplines (e.g. cancer diagnosis [11, 44],
detection of diabetic retinopathy [7], or assessment of rehabilita-
tion therapy [35, 60, 62]). However, even if such systems have the
potential to improve the quality and efficiency of health care [44],
the adoption of these systems in practice remains a challenge due to
the lack of user-centered designs [3, 14, 27, 42] and the opaqueness
of machine learning algorithms [10, 11, 27, 61].

For better deployment, recent research efforts in clinical decision
support systems have demonstrated the value of involving the end-
user in the process of design and evaluation. Yang et al. conducted a
field evaluation on the design of a decision support tool for cardiol-
ogists with synthetic data, and found that clinicians are more likely
to embrace a tool that augments their decision making in natural
and intuitive ways [64]. Cai et al. interviewed pathologists about
their desires about an Al assistant for prostate cancer diagnosis, and
discussed that one major need is to make an Al assistant transparent
by informing its overall capability and limitation on a task [12]. Lee
et al. [35] conducted interviews and focus-group sessions with ther-
apists to understand the challenges and needs during rehabilitation
assessment to design a human-centered decision support system.
In addition, Cai et al. demonstrated that interactive techniques can
improve diagnostic utility and user trust in the content-based image
retrieval systems with machine learning algorithms [11]. Beede et
al. showed that several socio-environmental factors can affect the
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Figure 2: The visualization interface of the proposed system that presents (a) the video of patient’s exercise motions and the
predicted quality of motion with (b) overall feature analysis with three most important features, (c) detailed feature values
with a specified threshold value of feature for assessment, and (d) trajectory trends between unaffected and affected side.

performance of a machine learning model and the experiences of
practitioners and patients through an observational study in clinics
[7]. These studies provide better understanding of clinicians’ needs
and several socio-environmental factors to deploy clinical decision
support systems.

In addition, Tschandl et al. [56] presents the feasibility of Al-
based supports to improve diagnostic accuracy of skin cancer recog-
nition. Lee et al. [35] demonstrates the value of a human-centered
decision support system to reduce therapists’ effort on assessment
and improve their agreement on assessment. However, the machine
learning (ML) models of [35, 56] are fixed and provide clinicians

only a passive interaction of reviewing recommendations from
a system. There is still limited knowledge on human-AI collabo-
rations, where both Al-based systems and clinicians collaborate
and complement each other on a task [12, 37]. In this work, we
investigate human-Al collaboration on the clinical decision making
on stroke rehabilitation assessment, and analyze the effect of an
Al-based system on therapist’s rehabilitation assessment and the
effect of therapist’s feedback on an Al-based system.
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2.3 Practices and Technological-Supports for
Rehabilitation Assessment

Rehabilitation assessment is a critical process for therapists to de-
sign an adequate intervention for patients with musculoskeletal
and neurological diseases (e.g. stroke). Therapists typically utilize
clinical tests that require direct, visual observation of patient’s ex-
ercises [23, 53]. However, as these tests are time-consuming and
therapists have limited availability, therapists infrequently perform
assessment [39]. Thus, they have a lack of quantitative data on pa-
tient’s performance and encounter a challenge of making informed
decisions on patient’s rehabilitation [6, 24].

To address this challenge, researchers explored the feasibility
of technology-assisted systems for rehabilitation [35, 62]. These
systems aim to automatically monitor and analyze motions of a
patient to provide therapists quantitative insights on patient’s con-
ditions. One approach of developing these systems is to elicit a set
of monitoring rules with the involvement of therapists [36]. For
instance, Lee et al. compared the positions of wrist and spine joints
to monitor the completion of an upper-limb exercise [36]. This
rule-based approach can be easily modularized and recombined
to develop a customized monitoring model. However, therapists
might not be able to articulate their complex and abstract decision-
making process into a set of rules. In addition, it is time-consuming
to manually review abundant sensor measurements and determine
which measurement could be utilized to monitor an individual sta-
tus. Alternatively, a machine learning algorithm can be utilized to
automatically learn a model with labeled sensor data to assess the
quality of motion [34, 36, 46]. However, as the healthcare domain
often involves a small dataset, it is difficult to completely replicate
the therapist’s assessment given patients with various conditions.
In addition, when a system with a complex algorithm cannot ex-
plain its prediction to support therapist’s decision making [40],
therapists can lose trust on a black-box system and abandon its
usage in practice [10, 27, 29, 61].

Mansoor et al. [3] discusses the necessity of more investigation
to address challenges of clinical acceptance on patient monitoring
systems. However, substantial prior work on technology-assisted
systems for rehabilitation focuses on demonstrating the feasibility
of collecting objective kinematic variables to quantify the perfor-
mance of rehabilitation exercises [43, 62] and improving the perfor-
mance of a machine learning model to assess the quality of motion
with complex algorithms [34, 46]. Instead, our work examines the
feasibility and benefits of human-Al collaborative decision making
that has been noted to deserve more attention [12, 35].

2.4 Explainability & Interactive Machine
Learning for Human-AI Collaboration

As an Al-based system cannot be perfect [34, 46, 55], it is criti-
cal to make the Al-based system explainable and interactive for
human-AI collaborative decision making in the high-stake con-
text. Explainability [8, 15, 16, 40] and interactive machine learning
[1, 11, 32, 37] have been actively explored by researchers to cre-
ate a better machine learning model with improved transparency
and user acceptance. Prior work describes the value of present-
ing relevant information of a task and acquiring inputs of a user
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(e.g. constraints of a model [25], weights of features[33], or feature
relevance [32, 37]) to refine the classification of a model.

This work aims to increase the interpretability of a model with
feature selection [8, 28]. Specifically, this work identifies salient
features for the assessment using reinforcement learning [37, 57] to
predict the quality of motion and generate patient-specific analysis
to summarize patient’s exercise performance to a therapist. In addi-
tion, this work presents an interactive approach that integrates a
machine learning model with an interpretable rule-based model to
support an active engagement of therapists and make use of their
knowledge [36]. After reviewing patient-specific analysis, a thera-
pist can iteratively provide feedback on feature relevance that can
be realized into a rule-based model to tune a model for personalized
assessment [37]. This work contributes to increase the knowledge
on how domain experts, therapists and an interactive artificial in-
telligence (AI) based system can augment each other for improved,
collaborative decision making on rehabilitation assessment.

3 DESIGNS OF THE STUDY FOR STROKE
REHABILITATION ASSESSMENT

For a test domain, this paper focuses on stroke, which is the second
leading cause of death and the third most common contributor to
disability [17]. After having iterative discussions with three thera-
pists with p = 5.33, o = 2.05 years of experience in stroke rehabili-
tation (TPs with check marks in the ‘Specification’ column of Table
1), we specified the designs of our study on stroke rehabilitation
assessment.

Table 1: Profiles of Participated Therapists for Specification,
Annotation, Rule Elicitation (ElicitRule), and Feature Elici-
tation (ElicitFeat)

Studies # of Years in
Specification Annotation ElicitRule Evaluation ElicitFeat Stroke Rehab

TP1 v’ v’ v’
TP2 v’ v’ v’
TP3 v’

TP4

TP5

TP6

TP7

TP8

TPY

COCCCKN
CACC X

)
o

3.1 Task-Oriented Upper Limb Exercises

This study utilizes three upper-limb stroke rehabilitation exercises
recommended by therapists due to their correspondence with major
motion patterns [35]: elbow flexion for Exercise 1, shoulder flexion
for Exercise 2, elbow extension for Exercise 3. For Exercise 1, a
participant has to raise the participant’s wrist to the mouth as if
drinking water. For Exercise 2, a participant has to pretend to touch
a light switch on the wall. For Exercise 3, a participant has to extend
the participant’s elbow in the seated position to practice the usage
of a cane.
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3.2 Performance Components

For rehabilitation assessment, this study utilizes three performance
components that are used commonly on stroke rehabilitation as-
sessment tools (i.e. Fugl Meyer Assessment [53]) and prior works
[35]. The ROM’ refers to the amount of a joint movement while
performing a task-oriented exercise. The ‘Smoothness’ describes
the degree of a trembling and irregular movement on joints. The
‘Compensation’ indicates whether a patient leverages unnecessary
joint movements to achieve a target movement. For instance, a
patient might elevate the patient’s shoulder to raise the affected
hand. We denote the correct/normal performance component as
Y =1 and incorrect/abnormal performance component as Y = 0.

3.3 Kinematic Features

This work represents an exercise motion with sequential joint po-
sitions from a Kinect v2 sensor (Microsoft, Redmond, USA) and
extracts various kinematic features to describe performance com-
ponents [34]. The features of ROM’ include joint angles (e.g. elbow
flexion, shoulder flexion, elbow extension) and normalized relative
trajectory (i.e. Euclidean distance between two joints - head and
wrist, head and elbow). The ‘Smoothness’ is represented by various
speed-related features: the speed, acceleration, jerk, zero crossing
ratio of acceleration and jerk, and Mean Arrest Period Ratio (the
portion of the frames when speed exceeds 10% of the maximum
speed) [51]. As our study focuses on upper-limb exercises, these
speed-related features are computed on wrist and elbow joints. For
the ‘Compensation’, we compute joint angles (i.e. the elevated angle
of a shoulder, the tilted angle of spine, and shoulder abduction)
and normalized trajectories (the distance between joint positions
of head, spine, shoulder joints in x, y, z axis from the initial to the
current frames).

To reduce noise of acquired joint positions from a Kinect sensor, a
moving average filter with the window size of five frames is applied
similar to [34]. For each exercise motion, we compute a feature
matrix (F € R™*4) with ¢ frame and d features of each performance
component and compute statistics (i.e. max, min, range, average,
and standard deviation) over all frames of the exercise to summarize
a motion into a feature vector (X € R*9).

4 INTERACTIVE APPROACH FOR
HUMAN-AI COLLABORATIVE DECISION
MAKING

This work presents an interactive approach (Figure 1) that combines
a machine learning (ML) model with a rule-based (RB) model from
the therapist’s knowledge for collaborative decision making on re-
habilitation assessment. This approach first automatically identifies
salient features to predict the quality of motion and generate patient-
specific analysis, which supports experts to gain new insights on a
decision making task [35]. After reviewing patient-specific analysis
from the visualization interface (Figure 2), a therapist can provide
feature-based feedback to interactively tune an imperfect model
[37]. In the following subsections, we describe the components
of our approach: dynamic feature selection using reinforcement
learning, a machine learning (ML) model, a rule-based (RB) model,
a hybrid model, and a visualization interface.
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4.1 Dynamic Feature Selection using
Reinforcement Learning

Reviewing kinematic features is an important way for therapists
to quantitatively and objectively understand the patient’s exer-
cise performance [63]. However, simply presenting all features can
overwhelm therapists and limit their ability to gain insights on
the exercise performance of a patient. Given the limited availabil-
ity to support multiple patients, therapists desire to minimize the
amount of time on analyzing kinematic features while accurately
diagnosing a patient’s status. Thus, this work aims to automatically
identify salient features of assessment for patient’s exercise motions
to generate an interpretable and succinct patient-specific analysis
and improve the therapist’s understanding of patient’s exercise
performance.

The long-established approaches of feature selection (e.g. filter,
wrapper, embedded methods) [54] find a fixed feature set to the
entire training dataset, which applies uniformly for all patients. In
contrast, this work applies a Markov Decision Process (MDP) [37]
to dynamically find the optimal feature set for each patient’s mo-
tions. As each patient has a different physical and functional status
[35], we hypothesize that feature selection with MDP can perform
better than classical feature selection approaches for personalized
rehabilitation assessment.

4.1.1 Problem Definition.
We formulate Markov Decision Process (MDP) for feature selection
as follows:

Let (X,Y) € D be a sample from a dataset, where X is a feature
vector, where x; is the value of a feature f; € ¥ = {fi, ..., fu}, nis
the number of features, and Y is the class label. Let ¥ be the set
of recruited features and the function ¢ : # — R=0 be the cost of
adding a feature in .

e State Space (S): Letstatebe s = (X, Y, ) € S,and the observed
state of the agent be s” = {(xj, f;) | V features f; € ¥}, the
recruited feature without the label.
Action Space: Let A = Ap U A, denote the action set. The
agent takes either the action of selecting a feature, ﬂf =F,
which is limited to features that are not selected or the action of
classifying an instance, A, = Y to terminate an episode.
Reward: Let the reward function be defined as
c(fi) ifaeAranda=f;
r(s,a) =r((X,Y,F),a) =4 -1 ifae Asanda#Y
0 ifae Acanda=Y
We apply a uniform cost of selecting features: Vf;, c(f;) = -4,
where A = 0.01. The agent receives a reward of -1 for incorrect
classification and a reward of 0 for correct classification.
e Transition: Let the transition function be
B - _JXY,FUf) ifaeAranda=f;
p(s,a) =p((X,Y,F),a) = TS fac A,
where TS is the terminal state after outputting the classification
and revealing the true label.

5

For MDP, each episode is to classify an instance from data and
the environment is the power set of the feature space. An agent
sequentially determines whether to query an additional feature or
classify a sample while receiving a negative reward for recruiting



CHI ’21, May 8-13, 2021, Yokohama, Japan

a feature or mis-classification. We utilized the Q-network with
Double Q-learning [41, 57] to solve this problem.

4.1.2  Implementation Details.

We implemented a neural network with the parameters 6 (Qy) for
Q-learning using the ‘PyTorch’library [47]. The input layer of the
network consists of feature and binary mask vectors [37]. This
masking input vector is to indicate whether a feature is recruited
or not. Specifically, let m € {0,1}" be an n-dimensional vector
for an environment of n features, where m; = 1 if the agent has
queried feature i thus far in the episode and 0 otherwise. This target
network is also used for a machine learning (ML) model to predict
the quality of motion. The architecture and parameters of a neural
network are described in Table 2.

For training a model, we utilize a batch of transitions that are
empirically experienced by the agent with a greedy policy 7g(s) =
argmax, Qy(s, a), and apply RMSProp optimizer to minimize the
following loss function:

1(0) = Esal(r(s,a,s") + Y max Qp(s.a") = Qa(s. @)1 (1)

where r(s, a,s”) indicates the expected immediate reward on tran-
sition from s to s’ under action a and y indicates the discounted
factor. We clip a gradient if a gradient norm exceeds 1.0 and update
the target network after each step. Instead of directly updating the
weight of the target network, we apply soft target updates [38]:
0" — pO+(1—p)0’, where 0 < 1. p denotes this soft target update
factor and is specified as 0.1. These soft target updates can improve
the stability of learning parameters of a target network. As the
application of soft target updates may lead to slow learning, we
apply an experience replay [41] for sampling efficiency. Specifically,
the environment with randomly drawn samples is simulated and
the transition data is recorded to the experience replay buffer. As
the environment is episodic with a short length, we choose a value
1.0 for the discount factor y. In addition, we apply the e-greedy
policy to control the exploration. Specifically, we linearly decrease
the e value from the €447+ (0.5) to the €,,4(0.05) with a step value,
Estep(0.02).

4.2 Machine Learning (ML) Model

A machine learning (ML) model applies a supervised learning algo-
rithm to predict the quality of motion on each performance com-
ponent and compute the score of being correct on a performance
component, Py = P(Y = 1|X). This paper explores various tra-
ditional algorithms: a Decision Tree (DT), Linear Regression (LR),
Support Vector Machine (SVM), a Neural Network (NN) using the
‘Scikit-learn’ [48] and the PyTorch’libraries [47]. For DT models,
Classification and Regression Trees (CART) is applied to build prune
trees while grid-searching different the maximum depth size of a
tree (i.e. 3 - 5). For LR models, L1, L2 regularization or linear combi-
nation of L1 and L2 (ElasticNet with 0.5 ratio) are applied to avoid
overfitting. For SVM models, we apply either linear, polynomial,
or Radial Basis Function (RBF) kernels with penalty parameters,
C = 1.0. For NN models, we grid-search various architectures (i.e.
one to three layers with 32, 64, 128, 256, 512 hidden units) and differ-
ent learning rates (i.e. 0.0001, 0.005,0.001, 0.01, 0.1) and apply the
‘ReLu’ activation functions and ‘AdamOptimizer’. NN models are
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trained until the tolerance of optimization is 0.0001 or the maximum
200 iterations.

4.3 Rule-based (RB) Model

A rule-based (RB) model leverages a set of feature-based rules from
therapists to predict the quality of motion. For the initial imple-
mentation, we conducted a semi-structured interview with two
therapists to elicit their knowledge of assessing stroke rehabilita-
tion exercises. This knowledge is represented as 15 independent
if-then rules. For example, assessing ROM for Exercise 1 is defined
as follows [36]:

i {1 if p™¥* (wr, cy) >= p™*(spsh, cy)
0 else

where p(j, ¢) indicates a joint position with a joint j (e.g. the wrist
(wr) and the spine shoulder, the top of spine, (spsh)) and the coor-
dinate of a joint, ¢ in the set C € {cy, cys ¢z} Y denotes the predicted
label on a performance component. This rule compares the maxi-
mum position of the wrist joint, p™%* (wr, c¢y) with that of the spine
shoulder joint p™“*(sh, cy) in the y-coordinate to roughly estimate
whether a patient achieves the target position of the Exercise 1,
‘Bring Cup To the Mouth’.

A rule-based (RB) model computes the score of being correct on
the performance component as follows:

1 I
Pppr = — min(—, 1 2
R = RT] reZR:T (Tr ) ()
where f; describes the feature value of a rule r from an exercise
motion (e.g. p*** (wr, cy) for the example above) and 7, describes
the threshold value of a rule r (e.g. p™** (spsh, cy) for the example
above). RT indicates the set of rules from the therapists with T-th
iteration. min function is applied so that this equation assigns a
value of 1 if the feature value of a rule exceeds the threshold of
that rule. Otherwise, the equation normalizes the feature value of a
rule with the threshold of a rule to compute the likelihood of being
correct.

A rule-based (RB) model can be iteratively updated with the ther-
apist’s feature-based feedback for personalized assessment with
patient-specific rules. Our approach can identify salient features of
assessment for patient’s motions and generate predicted assessment
with a patient-specific feature analysis between patient’s unaffected
and affected motions (Figure 2b): Tncorrect’ ROM is predicted due
to smaller maximum target position (affected: 0.30, unaffected: 0.88),
maximum elbow flexion (affected: 1.00 / unaffected: 0.95), and max-
imum elbow trajectory to head (affected: 0.68 / unaffected: 0.71).
A therapist can review this patient-specific analysis and provide
feedback whether identified, presented features should be included
or excluded [32] to predict assessment (Figure 2c). When including
a feature into a rule-based model, a therapist can either specify a
threshold value or utilize the feature value of the unaffected side for
the threshold value of a feature-based rule (7,). Feedback of adding
or removing a feature indicates that the corresponding feature-
based rule will be included or removed from the current set of rules
(RT). Similarly, feedback of updating a threshold value indicates
to replace the threshold value (z,) of the corresponding rule in the
current set of rules (RT).
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4.4 Hybrid Model

A hybrid model (HM) utilizes a weighted average, ensemble tech-
nique [4, 36] to combine two perspectives on assessment: a data-
driven, machine learning (ML) model and a rule-based (RB) model
from therapists. For the classification of the quality of motion, the
HM computes a weighted average of prediction scores from two
models, in which the contribution of each model is weighted by
the performance of a model (i.e. the F1-score of each model in the
range of [0, 1]). The prediction score of the HM, Prs is computed
as follows:

Pml PrpT
Pml * PrpT P+ Pml * PrpT Frsr ®
where Pyr, and Pppr indicate the predicted scores of a machine
learning (ML) model and a rule-based (RB) model with T-th itera-
tion from therapists and p,,; and p,,r describe the performance,
F1-scores of a ML model and a RB model with T-th iteration respec-
tively.

PHMT:

4.5 Visualization Interface

Based on a few guidelines of Human Artificial Intelligence (AI)
interaction [2, 32], we designed and implemented the web-based
visualization interface. This interface shows a video of recorded
patient’s exercise motions (Figure 2a). As therapists desire quan-
titative feature analysis instead of repetitively watching a video
patient’s exercise motions [35], this interface also presents a patient-
specific analysis that is considered “contextually relevant informa-
tion” [2] for the assessment. This patient-specific analysis includes
the predicted quality of each performance component (e.g. ‘Range
of Motion’, ‘Smoothness’, ‘Compensation’) and supplementary in-
formation on the prediction of a model, which contains feature
analysis (Figure 2b and 2c) and trajectory trends (Figure 2d) [35].
When presenting the predicted quality of motion on performance
components, the performance of a system is also included to “make
clear how well the system can do” [2].

In practice, therapists utilize patient’s unaffected motions as nor-
mality for assessment [45]. To follow this practice, “social norms”
[2], the interface includes comparison between the affected and
unaffected side of a patient to present salient features and trajec-
tory trends of three major joints (e.g. shoulder, elbow, and wrist)
for upper-limb exercises [35]. The interface “avoids overwhelming”
[32] therapists by including only three salient features for each
performance component with highest information gain. A radar
chart [35] is utilized to present multivariate, kinematic features
effectively.

In addition, the interface supports to “honor user feedback” [32]:
feature-based feedback from a therapist. After reviewing patient-
specific feature analysis, a therapist can provide feature-based feed-
back on whether an identified feature on analysis should be included
or removed for assessment (Figure 2c). For including a feature, a
therapist can specify a patient-specific threshold value to gener-
ate a feature-based rule for personalized rehabilitation assessment.
This interface presents a change in the performance of a model to
support the elicitation on the therapist’s feature-based feedback
(e.g. “Including Max. Target Position will increase the performance
(17%)” in Figure 2c).
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5 SYSTEM IMPLEMENTATION STUDY
5.1 Dataset of Stroke Rehabilitation Exercises

We utilized the dataset of three upper-limb stroke rehabilitation ex-
ercises from 15 post-stroke (13 males and 2 females) and 11 healthy
(10 males and 1 female) participants using a Kinect v2 sensor (Mi-
crosoft, Redmond, USA). During data collection, a sensor was lo-
cated at a height of 0.72m above the floor and 2.5m away from
a participant and recorded the 3D trajectory of joints and video
frames at 30 Hz. The starting and ending frames of exercise move-
ments were manually annotated.

A post-stroke patient participated in two data collection ses-
sions. In the first session, a therapist evaluated post-stroke patient’s
functional ability using the a clinically validated tool, Fugl Meyer
Assessment (FMA) [53]. Post-stroke patients had diverse functional
abilities from mild to severe impairment (37 + 21 Fugl Meyer Scores
out of 66 points). In the second session, post-stroke patients per-
formed 10 repetitions of each exercise with both their affected and
unaffected sides. Eleven healthy participants engaged in a single
session, which each participant performed 15 repetitions with par-
ticipant’s dominant arms for each exercise.

Two therapists (TP 1 and 2 with check marks in the ‘Annotation’
column of Table 1) individually annotated the dataset to imple-
ment our approach and compute the agreement level of therapists.
They separately watched the recorded videos of the patient’s exer-
cises (Figure 2a) and annotated the performance components of the
patient’s exercises without reviewing the analysis of our system
(Figure 2b, 2c, 2d).

5.2 Evaluation Methods

For implementation, the collected data is divided into Training’
and User’ data:

e ‘Training Data’ (Figure 1) is composed of 165 unaffected mo-
tions from 11 healthy participants and 140 affected motions from
14 stroke patients to train a feature selection model and a machine
learning (ML) model.

e ‘User Data’ (Figure 1) includes held-out testing post-stroke pa-
tient’s unaffected and affected motions. Given testing the pa-
tient’s affected motions, our approach dynamically selects salient
features of assessment and predicts the quality of motion on per-
formance components. For feature analysis of the visualization
interface (Figure 2b and 2c), both unaffected and affected motions
of a testing patient are utilized.

To train a machine learning (ML) model, we utilized the annota-
tion of therapist 1 (TP 1), who had more interactions with recruited
post-stroke patients by evaluating their functional ability with the
Fugl Meyer Assessment [53]. Given this ground truth annotation,
we applied leave-one-patient-out (LOPO) cross validation on post-
stroke patients to implement and evaluate our feature selection and
machine learning models. During LOPO cross validation, a model
was trained with data from all participants except one post-stroke
patient and tested with affected motions of the left-out post-stroke
patient. This process was repeated to evaluate affected motions of
all post-stroke patients. For the performance metric, we utilized a
F1-score that seeks to balance between precision (i.e. how many
instances a model can classify correctly) and recall (i.e. how robust
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a model is). The F1-score can provide a more realistic measure of a
model and be beneficial when there is an uneven class distribution.

To analyze performance of machine learning models, we com-
pared the annotations of therapist 1 and 2 to compute the agreement
level of therapists with F1-scores (Figure 3), In addition, we con-
ducted paired t-tests over three performance components of three
exercises to compare performance of our approach with various
machine learning (ML) models.

5.3 System Implementation Results

Figure 3 summarizes the performance of various models, which
measures the agreement with the therapist’s annotation using an
average F1-score over performance components of three exercises.
The parameters of machine learning models that achieve the best
F1-score during Leave-One-Patient-Out (LOPO) cross-validation
are summarized in the Table 2.

For machine learning (ML) models, we present the performance
of neural network trained for feature selection using reinforcement
learning (ML-RL), feature selection using Recursive Feature Elimi-
nation (ML - RFE), one of classical feature selection methods [20], a
decision tree (ML-DT), linear regression (ML-LR), a support vector
machine (ML-SVM), and a neural network trained with the full set
of features (ML-NN). Our approach, ML-RL achieves decent agree-
ment with the therapist’s annotation: 0.8119 average F1-score over
three exercises. In terms of feature selection approaches, ML-RL
has 0.11 higher average F1-score than ML-RFE (p < 0.01) and is
expected to perform better to generate a patient-specific analysis
for therapists. Compared to ML-NN with the full set of features,
ML-RL has 0.016 lower F1-score. However, ML-RL still outperforms
machine learning models with other algorithms: decision tree (ML-
DT with 0.7011 average F1-score), linear regression (ML-LR with
0.6981 average F1-score), and support vector machine (ML-SVM
with 0.7204 average F1-score) (p < 0.01). The performance of ML-
RL is equally good with that of the therapists’ agreement.

The initial, non-interactive rule-based model (RB 1) achieves the
lowest agreement level with the therapist’s annotation: 0.5821 av-
erage F1-score over three exercises. For the initial, non-interactive
hybrid model (HM 1), we combine the machine learning model
with feature selection using reinforcement learning (ML-RL) with
the initial rule-based model (RB 1). The HM 1 achieves 0.8305 av-
erage F1-score over three exercises, which is significantly better
performance than machine learning models with decision trees
(ML-DT), linear regression (ML-LR), and support vector machine
(ML-SVM) (p < 0.01). However, the performance of the HM 1 is not
significantly different, equally good with that of ML-NN and the
therapists’ agreement (TPA). Integrating two models of assessment
does not significantly improve the performance of a model.

6 USER STUDY ON HUMAN-AI
COLLABORATIVE DECISION MAKING

After the system implementation study, we conducted user stud-
ies with therapists to explore how a therapist and an interactive
artificial intelligence (AI) based system can collaborate on reha-
bilitation assessment. Specifically, we investigate 1) the effect of
patient-specific analysis from an Al-based system (i.e. predicted
quality of motion on performance components, feature analysis,
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Therapists' Agreement

Average F1-Scores

ML-RL ML-RFE ML-DT ML-LR ML-SVMML-NN RB1 HM1

Figure 3: Performance (average F1-scores) of various ma-
chine learning (ML) models, non-interactive, initial rule-
based and hybrid models (RB 1 and HM 1) and therapists’
agreement.

and trajectory trends) on a therapist’s decision making process
during rehabilitation assessment and 2) the effect of accommodat-
ing therapist’s feedback on an Al-based system. The questions our
studies sought to answer were:

e RQ 1: How does patient-specific analysis from an Al-based
system affect the therapist’s experience during decision mak-
ing on patient’s rehabilitation assessment?

e RQ 2: Can a therapist provide feedback on an Al-based sys-
tem to improve its performance?

6.1 Study to Evaluate the Utility of an Al-based
System

Although prior work demonstrates the feasibility of developing
an Al-based system for rehabilitation monitoring and assessment
[34, 62], limited work explores how such a system is actually used
in practice and affects user’s experiences on decision making [9].
To evaluate the effect of an Al-based system, we compared the
therapist’s experience on assessing post-stroke patient’s exercises
using our proposed system (Figure 2) to two baseline systems: the
‘Traditional’ system that presents only videos for assessment and
the Predicted Scores (PredScore)’ system that presents videos with
predicted scores without any patient-specific analysis. In the study,
we referred to systems as “Condition 1”7, “Condition 2”, and “Condi-
tion 3” (counterbalanced) to avoid biasing participants. For clarity,
we refer to them as the “proposed”, “traditional”, and “predicted
score (predscore)” systems in this paper.

6.1.1  Metrics.

We evaluated the systems with respect to 1) responses on question-
naires from therapists and 2) their agreement level on assessment.
Questionnaires are utilized [11] to collect therapist’s opinions on
various aspects of a system: usefulness and richness to support
decision making on assessment and attitudes toward an system (e.g.
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trust, workload, usage intention). All questionnaires were rated on
a 7-point scale.

e Usefulness: “[System - Condition X] is useful to understand
and assess patient’s performance”

o Richness: “[System - Condition X] generates new insights on
patient’s performance”

e Trust: ‘T can trust information from [System - Condition X]”

o Workload: participants answered the ‘effort” and “frustra-
tion” dimensions of the NASA-TLX [21] (e.g. “How hard did
you have to work to accomplish the evaluation task using the
[System - Condition X]?” and “How insecure, discouraged, im-
itated, stressed were you while using the [System - Condition
Xj?”

o Usage Intention: ‘T would use [System - Condition X] to un-
derstand and assess patient’s performance”

In most medical disciplines, experts can be biased in their deci-
sion making based on their own experiences and expert disagree-
ment is prevalent [5, 30, 31], even if they rely on standardized
guidelines [18, 23, 53]. Thus, this study also utilizes the agreement
level of therapists’ assessment to analyze the effect of a decision
support system. During the study, we collected the therapist’s as-
sessment on the patient’s rehabilitation exercises while using each
system. With this assessment from therapists, we computed their
agreement level on assessment to analyze whether our proposed
system with patient-specific analysis supports them more consis-
tent assessment than two baseline systems.

6.1.2  Procedures.

Seven therapists with y = 8.14, ¢ = 6.05 years of experience in
stroke rehabilitation (TPs with check marks in the ‘Evaluation’
column of Table 1) from four rehabilitation centers participated
in the user study on the evaluation. Note that we excluded two
therapists (TP 1 and 2), who annotated the dataset to implement
our system. After obtaining IRB approved informed consent, each
therapist was instructed on the procedure of the study and systems
using dummy data (30 minutes). Then, a therapist was assigned to
the task of assessing videos (around one minute per video, in which
a patient performs a rehabilitation exercise) using each system and
followed by post-study questionnaires (1.5 hours total).

We assigned the task of assessing 15 videos (five patients per-
forming three exercises) on each system. To counterbalance the
task of assessing videos on each system, therapist 1 (TP 1), who
evaluated the functional ability of patients, divided patients into
three sub-groups, in which patients of each subgroup have similar
functional abilities. The order of presenting the conditions/systems
and the assignment of a subgroup on a system are randomized. Af-
ter finishing a task using each system, therapists responded to the
questionnaires on the corresponding system. When therapists com-
pleted tasks with all systems, they participated in post-interviews
to further describe their perspectives on the effectiveness of using
our system during the assessment.

6.2 Study to Collect Therapist’s Feedback on an
Al-based System

Our interactive Al-based system (Figure 1) allows a therapist to
play an active engagement for collaborative decision making with
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the system instead of providing a passive interaction (e.g. reviewing
the prediction of a system). To analyze the effect of the therapist’s
feedback on an Al-based system, we had an additional study with
five therapists with p = 4.0, o = 1.67 years of experience in stroke
rehabilitation (TPs with check marks in the ‘ElicitFeat’ column of
Table 1). Each therapist was instructed on the task of providing
feature-based feedback with dummy data. The task of a therapist is
to review patient-specific analysis with predicted assessment and
salient features (Figure 2b and 2c) and provide feedback to make the
predicted assessment from the system as accurate as possible during
a 30 minutes session. For feature-based feedback, a therapist has the
following three options: 1) include or 2) remove a selected feature
for assessment, or 3) update the threshold value of a selected feature
for assessment. We assigned non-overlapping, three patients for
each therapist to generate feature-based feedback on all post-stroke
patients in our dataset.

7 USER STUDY RESULTS

7.1 Effect of an Al-based System on Therapist’s
Assessment

For analysis of results, we first performed one-way ANOVA tests on
results of metrics (i.e. responses on questionnaires from therapists
and their agreement level on assessment). If the results have any
statistical significance, we further performed pairwise statistical
analysis on three conditions/systems using paired t-tests. The re-
sults of statistical analysis using both one-way ANOVA tests and
post-hoc, paired t-tests are summarized in Table 3.

Figure 4 describes the responses on questionnaires from partic-
ipated therapists and their agreement level during rehabilitation
assessment. Overall, the proposed system has received better re-
sponses on all questionnaires: it presents therapists more useful
and richer information, reduces their efforts and frustration on
stroke rehabilitation assessment, and achieves the highest score on
usage intention. However, when we analyzed the statistical signif-
icance using one-way ANOVA tests and post-hoc, paired t-tests,
only richness, effort, and usage intent variables have statisti-
cal significance. Specifically, the proposed system has a signifi-
cantly higher richness score (¢ = 6.00) than the others (tradi-
tional: 4 = 5.06, p < 0.10 and proposed: p = 4.83, p < 0.10). The
scores of richness between traditional and predscore systems have
no statistical difference (Table 3), this indicates the positive effect
of user-specific analysis from the proposed system on the richness.
Therapists experienced significantly lower effort on assessment
(u = 2.66) with the proposed system than the others (traditional:
4= 3.93,p < 0.10 and predscore: p = 3.11, p = 0.27). The effort
score of the predscore system does not have a statistical difference
with that of the traditional system (Table 3). Thus, user-specific
analysis of the proposed system has a positive effect on lower ef-
fort. In addition, the proposed system has a significantly higher
usage intent score (1 = 5.4) than the others (traditional: y = 4.13,
p < 0.05 and predscore: y = 4.61, p < 0.10). As the usage intention
scores between traditional and predscore systems are not statisti-
cally different (Table 3), the user-specific analysis of the proposed
system has a positive effect on the usage intent score.
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Figure 4: Results of the User Study in term of (a) Responses
of Questionnaires and (b) Agreement Level of Therapists’
Assessments: the proposed system is more useful, richer,
more trustful while reducing effort and frustration on as-
sessment tasks. It is more likely to be used in the clinical
practices than other baseline systems (i.e. traditional and
predscore), and achieves the highest agreement on thera-
pists’ assessment. We indicate statistical significance using
one-way ANOVA tests at the bottom of each variable and
post-hoc, paired t-tests at the top of each variable. *, **,
and *** indicate statistical significance using the one-way
ANOVA tests or paired t-tests at 90%, 95%, and 99% signifi-
cance level.

When we further analyze therapists’ assessment from three sys-
tems, the proposed system with predicted assessment and user-
specific analysis (i.e. feature analysis, salient frames, and graphs of
joint trajectories) has supported therapists to achieve significantly
higher agreement on assessment (u = 0.7138 F1-score) than the
others: the traditional system (i = 0.66 F1-score , p < 0.01) and the
predscore system (u = 0.6924 F1-score, p = 0.18). Although both the
predscore and proposed systems achieve higher agreement levels
than the traditional system, the difference between the traditional
and proposed systems (p < 0.01) has higher statistical significance
than the difference between the traditional and predscore systems
(p < 0.10). Thus, this indicates a more positive effect of user-specific
analysis from the proposed system to improve the agreement level
of therapists’ assessment.

According to comments from therapists, presentation of pre-
dicted assessment and patient-specific analysis from the proposed
system is considered “useful to understand patient’s condition” and
“validate my own assessment”. Even though some predictions from
the proposed system are “not matching and trustful”, patient-specific
analysis of the proposed system complements to “understand why
such predicted scores are generated”. Thus, therapists can under-
stand the competence of a system to predict assessment on patient’s
exercises and develop a mental model in which cases therapists
can trust a system or not. In addition, therapists described that
patient-specific analysis of the proposed system (feature analysis
and trajectory trends) helps reduce their effort and frustration to
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“find evidence for assessment in videos”. They considered the pro-
posed system as “a good platform”, which “brings more interesting,
new aspects of a patient” in an easy and intuitive way and could
facilitate “understanding on patient’s performance and communicate
it with patients”. Overall, therapists are positive to accept the usage
of our proposed system in practice.

7.2 Effect of Therapist’s Feedback on an
Al-based System

After reviewing assigned patient-specific analysis from our system,
therapists provided nine feature-based feedback on each patient to
tune a system for rehabilitation assessment. Specifically, therapists
provided 7.26 new features, removed 0.33 features, and updated
1.06 threshold values on average over 15 post-stroke patients.

Both the rule-based (RB) model and hybrid model (HM) sig-
nificantly improve their performance while accommodating the
therapist’s nine feature-based feedback on each patient (Figure
5). Specifically, the rule-based (RB) model significantly improves
its performance to replicate the therapist’s assessment, 31% from
0.5821 to 0.7642 average F1-scores over three exercises (p < 0.01).
The tuned, interactive RB model (RB 10) has 0.0437 higher average
F1-score than the machine learning model with Support Vector
Machine (ML-SVM in Figure 3) and comparable performance with
the therapists’ agreement (i.e. 0.0212 lower average F1-score). In
addition, the hybrid model (HM) also significantly improves its per-
formance to replicate the therapist’s assessment, 9.7% from 0.8305
to 0.9116 average F1-scores (p < 0.01). The tuned, interactive HM
(HM 10) outperforms both the machine learning model with Neural
Networks (ML-NN in Figure 3) and therapists’ agreement (Figure
3): 0.0739 higher average F1-score than ML-NN and 0.1262 higher
average F1-score than therapists’ agreement (p < 0.01).

8 DISCUSSION

In this work, we study and discuss how a domain expert and an
artificial intelligence (AI) based system can collaborate for a decision
making task on stroke rehabilitation assessment.

8.1 Improving Experts’ Decision Making with
an Al-based System

Most medical disciplines rely on standardized guidelines to support
expert’s decision makings [18, 53]. However, as these guidelines
are limited to high-levels, experts can still become uncertain about
applying these guidelines and biased in their decision making based
on their experiences [10, 13], and expert disagreement is prevalent
[5, 30, 31]. Our results demonstrate that an artificial intelligence
(AI) based system can provide therapists quantitative insights on
the status of a patient to improve their experiences and agreement
level of rehabilitation assessment. Instead of presenting abundant
quantitative data for expert’s review, our system can automatically
identify salient kinematic features of decision making on rehabil-
itation assessment to predict assessment and generate succinct
patient-specific analysis as explanations on its prediction.
Therapists considered that the patient-specific analysis of our
system is useful to understand the performance of a patient quanti-
tatively, especially when a patient performs a motion incorrectly.
For instance, when a patient partially achieved the target position
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Figure 5: The effect of therapist’s feature-based feedback: (a) the performance of models over feedback, iterations and (b)
the comparison of model performance without/with feature-based feedback. Both rule-based and hybrid models significantly
improve their performance with therapist’s feature-based feedback (p < 0.01 using paired t-tests). Interactive, tuned hybrid
model (HM 10) performs better than the machine learning model with neural networks (ML-NN) and therapists’ agreement.

of an exercise, a therapist had to watch a video of the patient’s
exercise repeatedly and derive an imaginary threshold boundary
to distinguish whether the patient’s motion is closer to the half of
the target motion or not. This granular assessment from watching
a video becomes “more challenging and complex when the perfor-
mance of a patient is on the edge of two classes of the assessment”. In
contrast to a traditional system without analysis, our system with
patient-specific analysis assisted therapists to experience lower
effort to find evidence for assessment (Figure 4) and validate their
observation-based assessment with objective data. Even if a system
did not always provide a prediction that matched with therapist’s
assessment, therapists commented that “patient-specific analysis
with salient kinematic features still brought interesting aspects on
the assessment (e.g. comparing difference on unaffected and affected
side quantitatively and observing the trends of a joint trajectory)”.
They felt more assured on their assessment after reviewing this
patient-specific analysis with objective data.

Therapists could also develop a mental model on the competency
of a system [12, 35] while validating their decision with patient-
specific analysis. Based on this mental model, therapists trusted and
utilized a system accordingly, but also generated an idea on how
an imperfect system should be improved. For instance, therapists
found that the predictions on the ROM’ performance component
matched well with their assessment than those on the ‘Compen-
sation’ performance component. They mentioned that they spent
more time on analyzing patient-specific analysis of the ‘Compensa-
tion’ performance component than that of the ‘ROM’ performance
component. After reviewing patient-specific analysis, they selec-
tively utilized information from a system on their decision making.
In addition, therapists commented on the possibility of interacting
with a system to refine a system. ‘T found a case when a system mis-
classified compensation motion that involved leaning trunk forward,

but it did not present a leaning trunk forward feature in the analysis.
It could be better if I can interact with a system and adjust feature
selection of a system over time”.

Overall, the patient-specific analysis of our Al-based system sup-
ported therapists to achieve more consistent assessment on patient’s
exercises than the traditional interface without any patient-specific
analysis. Most therapists preferred the usage of our system in prac-
tice instead of repeatedly watching videos during the assessment.
Our findings highlight the importance of presenting supplementary,
quantitative information on the prediction of a system for more
accurate decision making and the potential value of an interactive
approach that allows a therapist to tune an imperfect system for
better acceptance in practice.

8.2 Improving an Imperfect Al-based System
with Expert’s Feedback

Artificial intelligence (AI) based systems continue to improve their
performance on various tasks [34, 55, 58]. However, such Al systems
may not completely replicate experts’ knowledge in a healthcare
domain that often involves a small dataset and may not perform
well on unobserved examples. Instead of relying on only machine
learning algorithms, we designed and implemented an interactive
approach (Figure 1) that combines a machine learning model with a
rule-based model from therapists to support collaborative decision
making on stroke rehabilitation assessment.

Among various non-hybrid models, machine learning models
with Neural Networks (ML-NN in Figure 3) outperform other non-
hybrid models and achieves comparable, equally good performance
with the initial hybrid model (HM 1 in Figure 3) that integrates the
machine learning model with reinforcement learning-based feature
selection (ML-RL) with the initial rule-based model (RB 1). However,
the ML-NN has the limitation of being a black-box model, in which
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therapists could only have a passive interaction (e.g. reviewing the
output of a model). Therapists could lose trust on such a black-box
model with a passive interaction, and abandon its usage in practice
[10, 27, 29, 61]. In contrast to the ML-NN, the HM has the benefit
of supporting a therapist with the interpretation and refinement of
a model by analyzing and updating rules of a rule-based model.

We further explored the possibility of interacting with our sys-
tem to adjust feature selection and rule-based model of a system
based on therapists’ comments (Section 8.1). Our results show that
this interactive approach with a hybrid model provides experts an
opportunity to actively engage with the outputs of a model and
iteratively provide feedback on an imperfect model for personal-
ized assessment with improved performance. After reviewing the
patient-specific analysis, therapists can have a better understand-
ing of the patient’s exercise performance and the capability of a
model, and provide feature-based feedback to refine a model. As
initial high-level rules from therapists are not tuned for each pa-
tient, the initial rule-based model (RB 1 in Figure 3) has the lowest
performance. After tuning with the feature-based feedback from
therapists, the rule-based (RB) model significantly improves its per-
formance that is comparable to the machine learning model with
Support Vector Machine (ML-SVM in Figure 3). This tuned, rule-
based model (RB 10) provides another perspective on assessment,
which also leads to significant improvement on the performance
of the hybrid model (Figure 5b). The tuned, hybrid model (HM
10) achieves significantly better performance than ML-NN (Figure
3). Even if an Al-based system still cannot replicate perfectly the
therapist’s assessment, our interactive approach supports expert’s
active engagement for better acceptance in practice [1, 11].

8.3 Potential Clinical Impact and Limitations

During a clinical decision-making task, both an expert and an arti-
ficial intelligence (AI) based system encounter a challenge respec-
tively. Experts need to make a decision under uncertainty based
on standard guidelines and their own experiences [10, 13, 53]. An
Al-based system can suffer to learn expert’s decision making from
a small dataset [22, 34]. Our findings show that both experts and
an Al-based system can learn from each other’s strength and make
more accurate, collaborative decision making. An Al-based system
can serve as an assistant of experts [12, 35] to provide new quan-
titative insights to improve the expert’s decision-making process.
After interacting with an Al-based system, an expert can understand
the capabilities and limitations of a system [12, 35] and provide
feedback on a system for improvement. We believe that general
concepts of our interactive approach that present predicted expert’s
decision making, explain its predictions on decision making with
salient features, and accommodate expert’s feedback can be appli-
cable to other disciplines for improving decision making. However,
this study is limited to demonstrate on a single domain, stroke
rehabilitation assessment with feature-based feedback from a few
interactions with therapists and ground truth labels of a single
therapist. More investigations on ground truth labels of multiple
therapists, different tasks, or deployment over an extended period
are needed for further generalization.

As each discipline and decision making rely on different data
modalities and priorities, it might be difficult to have a unified
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way of interactions between an expert and an Al-based system
on various decision making tasks. For instance, our work utilizes
sensor measurements on the positions of body joints in contrast
to the prior work on decision support systems with image data
[7, 11, 12]. In case of using sensor measurements, it is important
to confirm these measurements with domain experts and provide
these measurements in terms of understandable and user-friendly
terminologies [35]. In addition, as refinement tools on image data
(e.g. emphasizing or de-emphasizing an image) [11] are not ap-
plicable for sensor measurements from body joint positions, we
designed and implemented a feature-based rule as a way to support
therapist’s engagement with an Al-based system. Thus, we recom-
mend a human centered design process [7, 11, 35] on each decision
making task to specify the customized forms of explanations and
interactions with an Al system for human-AlI collaborative decision
making in practice.

9 CONCLUSION

In this paper, we described the implementation and evaluation of
an interactive approach for human and artificial intelligence (AI)
collaborative decision making. Our results show that both a do-
main expert and an Al-based system can learn from one’s strength
over the interaction and generate collective, hybrid intelligence
on a complex decision making task with improved accuracy. An
Al-based system with feature selection can provide experts sum-
marized quantitative analysis (e.g. predicted decision making and
explanations on its prediction with salient features) and support
them more consistent decision making. After interacting with an
Al-based system, experts can understand the limitation of a sys-
tem and provide feedback to improve an imperfect system. This
work contributed to broaden and enrich knowledge on how a do-
main expert and an Al based system can collaborate with each
other on a complex decision making task (e.g. stroke rehabilitation
assessment).
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