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Abstract— The recent rise and popularization of wearable and 
ubiquitous fitness sensors has increased our ability to generate 
large amounts of multivariate data for cardiorespiratory fitness 
(CRF) assessment. Consequently, there is a need to find new 
methods to visualize and interpret CRF data without 
overwhelming users. Current visualizations of CRF data are 
mainly tabular or in the form of stacked univariate plots. 
Moreover, normative data differs significantly between gender, 
age and activity, making data interpretation yet more 
challenging. Here we present a CRF assessment tool based on 
radar plots that provides a way to represent multivariate 
cardiorespiratory data from electrocardiographic (ECG) signals 
within its normative context. To that end, 5 parameters are 
extracted from raw ECG data using R-peak information: mean 
HR, SDNN, RMSSD, HRVI and the maximal oxygen uptake, 
VO2max. Our tool processes ECG data and produces a 
visualization of the data in a way that it is easy to compare 
between the performance of the user and normative data. This 
type of representation can assist both health professionals and 
non-expert users in the interpretation of CRF data. 

 

I. INTRODUCTION 

Cardiorespiratory fitness (CRF) or cardiorespiratory 
endurance relates to the ability of the human circulatory, 
musculoskeletal and respiratory systems to supply oxygen 
during exercise [1]. It is normally considered a crucial 
parameter to assess fitness in order to prescribe exercises, 
pharmacological treatments and rehabilitation therapies. One 
important aspect of CRF is that it directly relates to an 
individual’s functional status. Some of the parameters for the 
assessment of CRF can be derived from physiological 
measurements such as an electrocardiogram (ECG) which can 
be recorded during exercise. However, despite the relevance 
of the prognostic information provided by ECG based 
assessments of fitness, they are rarely used in primary care 
settings [2], possibly due to the cost and non-portability 
characteristics of the devices and the problems related with 
signal recording during exercise.  

The recent rise in the use of wearable and ubiquitous 
fitness sensors has allowed the increase of behavioral logs 

 
 

which can be defined as digital portraits of behavioral patterns 
recorded via multiple physiological sensors [3]. The use of this 
low-cost technology has made it extremely easy to collect and 
store data, and the companion web applications let you access 
them whenever you want. These behavioral logs may include 
cardiac information, location, and/or movement and 
performed activities. Unfortunately, in the particular case of 
CRF, the existing data visualization tools are still insufficient 
for non-expert users and there is a need for new methods to 
visualize and interpret CRF data. 

Users of these novel tools to measure and register 
physiological signals want to understand what their data says 
about them. This created new approaches to facilitate the 
interpretation of large amounts of data. One of the best ways 
to explore and try to understand large datasets is by developing 
novel information visualization tools to reinforce the 
understanding of abstract data [4]. In this case, the challenge 
is not necessarily the use of computational methods to display 
large amounts of data in nice looking graphs, but rather to 
augment human perception and the understanding of data 
through their visual representation. For this reason, visual 
representation of data plays an important role in the confluence 
between the availability of complex multivariate health data 
and the rise and quick adoption of health tracker technology 
[5]. However, this phenomenon is not unique to health 
trackers. In the medical context, as our ability to generate and 
access abundant clinical data is growing at an exciting pace, it 
also becomes imperative to develop new methods to organize 
and visualize information without overwhelming users. Health 
professionals are faced with an information overload of 
specialized medical data and the way data are presented affects 
how such information is interpreted [6]. Consequently, the 
following questions arise: how can we improve the 
understanding and interpretation of physiological signals 
usually represented in stacked univariate plots? How do these 
signals relate to the specific condition that is being assessed? 
How can non-experts users interpret their own recorded 
signals? 

The central goal of this work was to design and develop an 
interactive information visualization tool to represent the data 
from a wearable electrocardiography sensor, by extracting a 
specific set of parameters to assess cardiorespiratory fitness, 
and interpreting it through pre-established normative data [7]. 
The main design constrains of this tool are related with i) 
representation of the data in a way that it is easy to compare 
between the current state of the user and normative data; ii) 
representation that is useful for both non-expert users and 
health professionals; and iii) the visualization has to be 
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generated with minimum computer resources within an 
acceptable period of time.  

II. METHODS: CARDIORESPIRATORY FITNESS ASSESSMENT 

FROM ELECTROCARDIOGRAPHY DATA 

ECG registers by means of surface electrodes the electrical 
activity generated by the dynamics of the myocardial fibers of 
the heart. The advantages of this bioelectrical measurement 
methodology are its low cost, real time feedback, low 
invasiveness and easy implementation. The ECG is widely 
used to diagnose some types of abnormal heart function, 
including arrhythmias and conduction disturbances [8]. 
Through ECG measurements, important parameters for the 
CRF assessment can be extracted. In our particular case, 5 
parameters derived of the ECG signal were chosen. The 
different formulas to compute the parameters were chosen 
considering existent bibliography for healthy adults. 

 
The detection of the QRS complex is one of the most 

important steps carried out in the ECG signal analysis. The 
detection of R peaks within the QRS complex is easier than 
the other ECG segments due to its morphology because of its 
structural form and high amplitude. From it, the RR interval 
(RRI) – the time duration between two successive R peaks – 
can also be computed [9]. For a healthy adults, the average 
number of the heart beats per minute is about 60-80, which 
corresponds to a mean value of RRI about 600-750 ms [8]. 
The mean HR is a simple time-domain variable that can be 
easily derived from ECG signals recorded in normal 
conditions and by low cost personal trackers. RR intervals can 
be converted to HR by the following equivalent formula [8]: 
 
𝐻𝑅 𝑖𝑛 𝑏𝑒𝑎𝑡𝑠/ min = 1000/𝑅𝑅 (𝑖𝑛 𝑚𝑠) × 60          (1) 
 

Heart Rate Variability (HRV) can be measured through 
variables such as the standard deviation of the RR interval 
(SDNN, sometimes also called SDRR) and the square root of 
the mean squared differences of successive RR intervals 
(RMSSD). SDNN represents the extent of heart rate 
variability and normally is used to measure temporal changes 
in the heart behavior for 24-hour period [9].  
 

𝑆𝐷𝑁𝑁 =  √
1

𝑁−1
∑ [𝐼(𝑛) −  𝐼]̅2𝑁

𝑛=2      (2) 

 
where I is the RR interval and N the total number of all RR 

intervals in the segment. RMSSD represents the difference 
between consecutive R waves (eq. 3). Thus, when RMSSD 
decreases it means that the person’s heart beat becomes 

quicker.  
 

𝑅𝑀𝑆𝑆𝐷 =  √
1

𝑁−2
∑ [𝐼(𝑛) − 𝐼(𝑛 − 1)]2𝑁

𝑛=3     (3) 

 
There is a strong dependence of HRV parameters with age, 

which means that the values require either to be adjusted for 
age or that age-related references need to be considered [10]. 
Because of these dependencies, extensive research has been 

devoted to the consolidation of normative data for SDNN and 
RMSSD for different age ranges [11].  

Geometric methods in HRV analysis include parameters 
derived from RR histograms. The shape of the histograms has 
been associated with mood factors [11]. The HVR triangular 
index (HRVI) is computed as a triangle with its baseline width 
conformed by the amount of RR interval variability and its 
height corresponding to the peak of the histogram count of all 
RR intervals [9]. 

  

                𝐻𝑅𝑉𝐼 =  
∑ 𝑏(𝑡𝑖)𝑁𝑏

𝑖=1

𝑚𝑎𝑥𝑖𝑏(𝑡𝑖)
                                    (4) 

 
where Nb is the number of bins and the number of intervals 

in the ith bin centered at ti is represented as b(ti).  
Finally, another important factor to evaluate functional 

cardiorespiratory capacity is VO2max. VO2max is the maximum 
oxygen uptake capacity and it is a reliable measurement that 
reflects the functional capacity of the cardiorespiratory 
system. This measure represents the ability of the body’s 

circulatory and respiratory systems to deliver oxygen to the 
muscles during dynamic exercising involving a large muscle 
mass [7]. The estimation of the VO2max is performed using the 
ratio between the heart rate values at rest (HRrest) and maximal 
exercise (HRmax). The value of HRrest is defined as the lowest 
value of any 1-min average during a 5-min sampling period, 
and the HRmax can be approximated using the highest 5-s 
average during different exercise tests such as a treadmill test. 
Additionally, the HRmax can be estimated using several age-
related formulas [12]. Hence, VO2max has been used 
extensively as a simple and useful tool to estimate 
cardiorespiratory capacity [13]. 

 

  𝑉𝑂2𝑚𝑎𝑥 = (15.0 𝑚𝑙 ∙ 𝑚𝑖𝑛−1 ∙ 𝐾𝑔−1) ×
𝐻𝑅𝑚𝑎𝑥

𝐻𝑅𝑟𝑒𝑠𝑡
      (5) 

 
VO2max is used to classify the cardiorespiratory fitness 

level (poor, fair, good, excellent or superior) using age/gender 
related normative values [7]. Thus, many performance tests 
have been devised to predict VO2max directly from ECG 
measurements [7]. 
 

III. METHODS: MULTIVARIATE PHYSIOLOGICAL DATA 

VISUALIZATION 

All the above ECG parameters play an important role in 
the CRF assessment. However, the current methods to 
visualize multivariate physiological data focus on visualizing 
independent or stacked temporal windows that represent 
individual parameters. This often results in confusing or 
overloaded graphs, complicating the assessment by the 
specialist and limiting the understanding of final users about 
their cardiorespiratory status. Nevertheless, there are other 
multivariate temporal visualization techniques designed to 
facilitate data interpretation. One method that has recently 
become popular is the use of radial plotting to visualize 
multivariate physiological data [14]. StartPlots or RadarPlots 
are graphical methods for displaying multivariate data in the 



  

form of a 2D chart of three or more quantitative variables 
represented on axes starting from the same point [4]. Each 
multivariate observation can be seen as a data point in an n-
dimensional vector space: 
 
 Arrange ℕ axes on a circle in ℝ𝑁 and 3 ≤ ℕ ≤ ℕ𝑚𝑎𝑥 

 Map coordinate vectors Ρ ∈  ℝ𝑁 from ℝ𝑁 →  ℝ2 

 Ρ =  {𝑝1, 𝑝2, … , 𝑝𝑁}  ∈  ℝ𝑁 where each 𝑝𝑖  represents 
a different attribute with a different physical unit.  

 Each axis represents one attribute of data. Each data 
record or data point Ρ is visualized by a line along the 
data points. 

 A line is perceived better than just points on the axes. 
 

In these plots, several axes can be drawn, one for each 
variable, starting from the middle and equally spaced in a 
circle. The center represents the minimum value for each 
variable, and the ends represent the corresponding maximum 
values. 

Past work has shown the usefulness radar plots in 
multivariate physiological data representation. Sebastian et al. 
created a multi-signal visualization tool for traumatic brain 
injury monitoring [15]. Physiological data related with 
intracranial pressure, arterial pressure, cerebral perfusion 
pressure, heart rate and cerebral tissue oxygenation are plotted 
as polygrams (or radars) as new visualization dashboards. 
Another more recent work by Holzinger et al. shows the 
design and development of an end-user centered mobile 
software for interactive visualization of physiological data to 
support the prevention of stress and burnout syndromes [16]. 
ECG and EDA signals are plotted in star plots, the values of 
each feature being normalized to provide a better comparison 
between plots. The presentation of health care data in star 
plots for clinical studies has been shown to be useful because 

it allows the easy assessment of [14]: i) changes over time in 
multiple variables, in a single individual or in different 
groups, ii) multiple- treatment group differences on multiple-
outcome measures, iii) difference between disease conditions 
on multiple variables. 

In our solution, we considered the following normative 
values for: HR [7], SDNN, RMSSD, HRVI [11] and VO2max 

[7]. In order to personalize the visualization to each user and 
facilitate data interpretation, each radar plot is generated 
taking into account 3 important aspects: age, gender and 
activity, which normally define the normative reference 
values. Further, 3 fitness profiles were defined for 
cardiorespiratory performance: high (Excellent-Superior), 
normal (Good), and low (Poor-Fair). For these, all axes are 
divided in 3 equally sized frames considering the values of the 
3 profiles for each parameter. Prior to rendering the 
visualization, a uniform scale is used on every axes for all 
parameters and for each of the 3 profile divisions. This 
approach provides an elegant solution to the “filled in” 

problem of radar plots, in where the area and shapes of the 
formed representations change dramatically with data ranges, 
non-linearity of data, and the order of each parameter in the 
graph axes. 

IV. RESULTS: VISUALIZATION TOOL IMPLEMENTATION 

We developed the PhysioLab, an interactive information 
visualization toolbox to represent ECG parameters for CRF 
assessment using radar plots (Figure 1). Following the above 
described methodology, we implemented 3 stages prior to 
obtaining the final visual representation: ECG signal 
processing, feature extraction, and data normalization 
according to the corresponding normative data. The 
PhysioLab toolbox and the processing of the ECG signals are 
implemented in Matlab (MathWorks Inc., Massachusetts, 

 
 
Figure 1. The PhysioLab, an interactive information visualization toolbox developed to assist in the assessment of cardiorespiratory 

fitness from wearable electrocardiographic data. 
 

 



  

US). PhysioLab uses different signal pre-processing methods 
to reduce low frequency artifacts caused by respiration and 
user movements. To stabilize ECG baseline wander, which is 
characterized for baseline oscillations at a very-low frequency 
drifting between 0.15 Hz and 0.3 Hz, some denoising 
techniques are used. First, the signal is smoothed by a fifth-
order Savitzky-Golay FIR filter. Then, a low order 
polynomial is fitted to the raw data and is used to detrend the 
ECG signal. At this stage, a simple threshold rule based on 
the peak morphology is applied to detect the R-peaks. 
PhysioLab presents the original signal and the detrended one 
with the R-peaks detection in separate windows (Figure 1). 
All ECG parameters are displayed within the user interface of 
the PhysioLab toolbox and stored to produce the Radar Plot. 
Figure 1 shows a previsualization of the toolbox after ECG 
signal processing and feature extraction. Once all CRF 
parameters are extracted from the raw ECG, a radar plot is 
generated (Figure 2).  
 

 
Figure 2. An example cardiorespiratory radar plot generated using 

MeanHR, VO2max, SDNN, RMSSD and HRVI parameters. 
 

Performance profiles derived from available normative 
data are generated and color-coded facilitating the 
interpretation and comparison of user performance (blue line) 
with the CRF levels (high-green, average-yellow, low-red). 
Figure 2 shows the cardiorespiratory radar for a five minutes 
resting ECG recordings of a 32 years old woman. The final 
radar plot allows for a quick visualization of the 
cardiorespiratory fitness state of the user for the activity 
proposed. In this case, almost all the parameters are in the 
high profile of CRF indicating an excellent-superior 
classification of the user performance. Only the RMSSD 
parameter reported lower values than the high profile but still 
within a “safe” average zone (see yellow zone in figure 2). 

CONCLUSIONS 

Here we presented a tool for the assessment of 
cardiorespiratory fitness using ECG data, and a novel 
approach to visualize multivariate physiological data. The 
solution proposed is a Matlab toolbox that extracts five 

cardiorespiratory parameters from pre-processed ECG 
signals. Our visualization improves on the classic radar plot 
concept and applies it in the CRF assessment domain. Our 
visualization method normalizes data in each axis of the plot 
and establishes color-coded zones to represent the different 
fitness profiles. These are then compared with the user’s 

current performance in a particular activity. Such strategy 
allows expert users to quickly determine the classification of 
a person’s activity performance in terms of functional 
cardiorespiratory capacity, which is defined by tabulated 
normative data. In addition, end-users can easily understand 
their CRF profile without the necessity of interpreting data or 
remembering normative ranges of values. Finally, using the 
Physiolab toolbox, the generation of the radar plot is 
generated instantly from the ECG features previously 
extracted and from the normative data defined by our 
literature review. Future work should include interactivity in 
order to navigate to past user records. 
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