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6.1 Introduction
The brain can be described as an electrochemical machine, inducing a combina-
tion of electrical and chemical signals. The existence of the electrical activity of
the brain was initially captured and demonstrated almost a century ago, first by
Richard Caton in animals [Caton 1875] and later by Hans Berg in humans [Berger
1933]. Berg achieved the capturing of electrical activity exhibited in human brain by
using a novel method at the time, the electroencephalography (EEG). To date, non-
invasive EEG is themost commonbrain signal acquisition technology. EEGutilizes
surface electrodes—over a layer of bone and tissue—for capturing the combined
electrical activity of populations of excitable cells called neurons. These “firing”
neurons have characteristic intrinsic electrical properties, producing electrical and
magnetic fields when activated [da Silva 2010].

The electrical activitymanifested in neurons reveals discrete potential patterns,
which in turn characterize different states of mental activity. These patterns are
distinguished by different wave oscillations in the frequency domain [Buzsáki and
Draguhn 2004]. Through this electrical activity, it was discovered that different
potential patterns are produced by different states of mental activity. These pat-
terns are distinguished by different wave oscillations in the frequency domain
called EEG bands or rhythms.

These EEG rhythms are divided into different frequency ranges (see Figure 6.1),
namely delta (δ) (1–4Hz), alpha (α) (8–12Hz), beta (β) (13–30Hz), theta (θ) (4–8Hz),
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Figure 6.1 Frequency ranges of EEG rhythms: δ (1–4Hz), α (8–13Hz), β (13–30Hz), θ (4–8Hz), and γ

(40–100Hz).

and gamma (γ) (40–100Hz), and each rhythm or combination of rhythmic activity
is related with different mental states, including motor planning [Schomer and de
Silva 2011]. For example, rhythms in the α and β frequency bands are functionally
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related to major sensorimotor systems [Crone et al. 1998], which are activated pri-
marily through motor preparation or execution [Pfurtscheller and Neuper 1997].
α and θ oscillations are known to reflect cognitive and memory performance
[Klimesch 1999, Schack et al. 2002], and θ was found by early EEG studies to be
closely related with problem-solving, perceptual processing, and learning [Schac-
ter 1977]. Furthermore, δ rhythm is related to concentration, attention, and internal
processing [Harmony et al. 1996], while γ rhythmhas been shown to bemodulated
during volitionalmeditation (concentration focusedon a visualization), conscious-
ness, and sense of self [Lehmann et al. 2001]. Translating cognitive states or motor
intentions from different EEG rhythms is a complex process, and it is impossible
to associate a single frequency range or cortical location to a brain function.

This oscillatory brain activity—recorded through EEG—is currently used for
the interfacing between humans and computers. This connection is achieved
through the use of communication systems called brain–computer interfaces
(BCIs) or brain–machine interfaces (BMIs) [Wolpaw et al. 2002]. Some of the ben-
efits of using EEG for BCI include the high temporal resolution (1ms), relatively
lightweight and portability, and finally the cost compared to other brain imaging
technologies (e.g., magnetoencephalography [MEG] or functional magnetic res-
onance imaging [fMRI]), allowing for more flexible data collection in real-world
environments [Vourvopoulos et al. 2019c]. On the downside, EEG signals are noisy,
non-stationary, and have low spatial resolution, making source localization hard
to achieve and rendering their utilization cumbersome [Lotte et al. 2007].

A unidirectional brain-to-computer communication is elicited first by a stim-
ulus (visual, auditory, or somatosensory), which generates endogenous or exoge-
nous potentials. Endogenous potentials are those whose occurrence is not related
to the physical attributes of a stimulus (e.g., frequency or intensity) but to a per-
son’s reaction to it. For example,motor imagery BCI (MI-BCI) involves the imagina-
tion of limbmovements and is considered a BCI paradigm that evokes endogenous
potentials since the user generates motor-related brain patterns unrelated to the
stimulus attributes. In addition, P300 BCIs use brain responses that are generated
300ms after stimulus onset (hence the name P300) [Fazel-Rezai et al. 2012] but are
considered to be also endogenous potentials, since after the stimulus presenta-
tion, there is a stimulus validation process (a cognitive function) by the brain. In
contrast, the steady-state visually evoked potentials (SSVEPs) are considered an
exogenous potential since they are caused by visual stimulation of flashing lights,
which occur at the primary visual cortex of the brain [Creel 1995]. Both SSVEP and
P300 paradigms are mostly used mainly for patients in the locked-in state, while
MI-BCI captures activity over the motor and somatosensory cortices and is used
primarily for motor restoration and rehabilitation [Vourvopoulos et al. 2019b].
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BCIs not only offer an alternative communication channel between the user and
the machine for restorative or assistive applications, but they can also broaden
the communication bandwidth of healthy users with a system [Niforatos et al.
2017], for example,measuring drivers’ cognitive load (see Chapter 11 CS7). BCI is an
emerging research area in the fields of virtual reality (VR) and interactive systems,
providing a wide new range of possibilities in the way users interact with games
and virtual environments. VR feedback in BCIs offers a more compelling experi-
ence to the user through immersive virtual environments [Lotte et al. 2013a]. The
fusion of BCI and VR (BCI-VR) enables a wide range of experiences where partici-
pants can control various aspects of their (VR) surroundings—either in an explicit
or implicitmanner—by usingmental imagery alone [Friedman 2017]. For example,
to be able to walk through a virtual street withoutmuscular activity, only imaginary
feet movements [Pfurtscheller et al. 2006].

This direct brain-to-VR communication can induce illusions mostly relying on
the sensorimotor contingencies between perception and action that could poten-
tially increase the sense of presence and embodiment in VR [Slater 2009]. This
harnesses the benefits of immersive VR into transferring the physical body into
the virtual world [Slater et al. 2010].

The use of BCIs in games has become progressively prevalent, particularly in
the last few years, due to the introduction of low-cost EEG systems that render
EEG technology accessible for non-medical research [Vourvopoulos et al. 2019c].
High-end, medical-grade, EEG acquisition systems range between 10,000 and
250,000 EUR (e.g., Biosemi [Biosemi B.V., Amsterdam, The Netherlands], Brain
Products [Brain Products GmbH, Gilching, Germany], Advanced Brain Monitoring
[Advanced BrainMonitoring Inc., Carlsbad, CA, USA], or EGI [Electrical Geodesics,
Inc., Eugene, OR, USA]), while low-cost commercial EEG devices are accessible
between 100 and 1000 EUR (e.g., Emotiv EPOC [Emotiv, San Francisco, CA, USA],
Neurosky Mindwave [NeuroSky, San Jose, CA, USA], Muse Headband [Toronto,
Ontario, Canada]), offering low-cost, off-the-shelf systems for developers. More-
over, open hardware and open-source projects are now offered as alternatives to
commercial and patented equipment through open-source projects for hobbyists
and EEG “hackers” (e.g., OpenBCI [OpenBCI, Brooklyn, NY, USA] or open EEG
project), ranging from 300 to 1,000 EUR. In fact, prior research analyzing and
comparing EEG systems ranging from open-source devices to medically certified
systemshas demonstrated that effective BCI interaction canbe accomplishedwith-
out requiring high-end/high-cost devices [Nijboer et al. 2015, Vourvopoulos and
Bermúdez i Badia 2016a].

Nowadays, EEG-based BCI systems are starting to gain ground in enhancing
interactive systems and as a result play an important role in human–computer
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interaction (HCI) research. However, major challenges must still be tackled for
BCIs to mature into an established communications medium for VR applications
[Lécuyer et al. 2008].

6.2 Interfacing with the Brain
EEGsignals are acquired through surface electrodes usually coatedwith silver chlo-
ride (AgCl) or other metals such as silver (Ag), tin (Sn), steel (alloy of iron [Fe] and
carbon [C]), and gold (Au). EEG electrodes conduct the acquired EEG signals to a
signal amplifier for amplification. Signal amplification is necessary, since EEG sig-
nal amplitude is very weak, and thus needs to be amplified several thousand times
before it can be captured. This innate EEG signal faintness implies a high suscep-
tibility to noise, particularly in the bands of 50/60Hz, transmitted inductively by an
adjacent electric field, such as those generated from building wiring. Amplifiers
boost EEG signals into a range where they can be digitized accurately (e.g., micro-
volts [µV]) by an analog-to-digital converter (ADC). When the signal is digitized,
it is then directed to a computer system via communication interfaces such as an
S-232 serial port, USB, or Bluetooth.

On the side of the computer system, specialized software is acquiring the
quantized signal originating from the ADC and provides it as input to the other
layers of the existing software architecture, including dedicated EEG client soft-
ware. The most common EEG client software provides visualization, basic filter-
ing, and/or logging features. These and additional post-processing features are
available through commercial software or for free in open-source software.

6.2.1 Requirements
6.2.1.1 Hardware

EEG systems differ in the sampling rate (the number of samples per second) they
can support, the number of electrodes, type of electrodes (active vs. passive or dry
vs. gel), their portability, and extendibility.

Sampling rates: Sampling rates are expressed in samples per second with the unit
Hertz (Hz). For example, an EEG systemwith a sampling rate of 250Hz canmeasure
250 samples per second. For analyzing the acquired digitized signal, one should be
aware of the Nyquist theorem. The Nyquist theorem states that all of the informa-
tion in an analog signal (such as EEG voltages) can be captured digitally as long
as the sampling rate is higher than twice the highest frequency of interest in the
signal [Srinivasan et al. 1998]. For example, if you sampled your data at 256Hz, you
should only analyze frequencies up to 256/2 = 128Hz, if not less.
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Number of electrodes: The number of electrodes required depends on the BCI
paradigm one wants to use (e.g., P300 or MI) or the type of application (e.g.,
spellers for communication, control of prosthetic limbs, workload measurement,
etc.). For example, for SSVEP or P300 paradigms, eight-electrode systems are suf-
ficient, since a subset of four electrodes are utilized on average, covering mainly
the occipital area of the head (the occipital lobe is the area of most of the brain’s
visual cortex). On the other hand, for MI cases where spatial filtering is used for
improving classification performance, a large number of electrodes is desired over
the motor and sensorimotor areas [Farquhar et al. 2006]. In cases of two-class
MI classification, 16-electrode systems provide a safe choice. On the other hand,
there are MI paradigms that could use fewer electrodes (with the additional refer-
ence and ground electrodes). For example, locomotion detection (imagination of
walking) could be sufficiently detected with one- to four-electrode configuration
over the target area (e.g., over location Cz depicted in Figure 6.3, and the adjacent
electrodes).

Type of electrodes: Electrodes require conductive paste or gel to be applied first
on the scalp of the user. Although a new generation of dry electrodes has been
developed to minimize the preparation time, to date, there is no study reporting
better performance of dry electrodes over the gel electrodes, with artifact levels
being consistently and significantly higher during the use of dry electrodes [Searle
and Kirkup 2000]. Gel-based electrodes are divided between active and passive
electrodes. Active electrodes have embedded built-in circuitry which amplifies the
electrical current (ultra-lownoise pre-amplifier) before sending it to theEEGampli-
fier (see Figure 6.2[f]). This greatly improves the signal quality received by the EEG
amplifier, yielding significant advantages over passive electrodes. In addition, due
to lower impedance levels, active electrodes usually take a shorter time to set up.
The downside is their increased cost. Overall, the use of active gel electrodes is the
most robust solution for high signal-to-noise ratio.

Portability: There are two types of EEG amplifiers, namely wired (RS-232 serial
port or USB) and wireless (Bluetooth). Wireless options can provide independence
for field studies but also lighter setup with less cables, reducing artifacts of mov-
able parts. On the other hand, wired solutions offer more bandwidth, uninter-
rupted connection, no missing data packets due to poor signal, and do not rely
on batteries.

6.2.1.2 Software
The available EEG software is highly diverse, and it depends on the use case and/or
application scenario at hand. For example, the EEG software involved inmeasuring
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Figure 6.2 Main electrode types: (a) dry electrode, (b) gel electrode, (c) frontal semi-dry electrode,
(d) disposable adhesive electrodes for referencing over the mastoid, (e) disc electrode,
(f) active electrode (with embedded circuitry for pre-amplification).

brain activity changes in response to external stimuli (e.g., visual) may differ from
the EEG software used for classifying EEG activity as input to a game (e.g., move an
avatar right or left). Despite often being implemented in an integrated and holis-
tic fashion, EEG software can be divided into two broad categories: collection, and
analysis and visualization.

Collection: Perhaps the most well-known EEG protocol for collecting EEG sig-
nals is the lab streaming layer (LSL) (Kothe 2014). The LSL is a transmission
control protocol (TCP) for the unified collection of measurement time series in
research experiments that handles both the networking, time-synchronization,
(near-) real-time access as well as, optionally, the centralized collection, view-
ing, and data storage. For real-time acquisition and storage, Openvibe (Inria,
Rennes, France) [Renard et al. 2010], Neuropype (Intheon Labs, San Diego, CA,
USA), and BCI2000 [Schalk et al. 2004] support the majority of the commer-
cial and open EEG devices (more than 20). The collected data can be stored
in the European Data Format (EDF and EDF+), a simple and flexible format
for the exchange and storage of multi-channel biological and physical signals
[Kemp and Olivan 2003], extended by eXtensible Data Format (XDF, https://
github.com/sccn/xdf) (Swartz Center for Computational Neuroscience, University

https://github.com/sccn/xdf
https://github.com/sccn/xdf
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of California, San Diego [UCSD]) for handling data with high sampling rates
such as audio, or data with a high number of channels such as fMRI or raw
video.

Analysis and visualization: For analyzing EEG data, a comprehensive set of spe-
cialized tools have been developed as toolboxes in MATLAB, but also as stan-
dalone versions. EEGLAB (Swartz Center for Computational Neuroscience, UCSD)
[Delorme and Makeig 2004] is one of the most widely used tools for EEG analysis,
incorporating independent component analysis (ICA), time/frequency analysis,
artifact rejection, event-related statistics, and several visualization features. Field-
Trip is a MATLAB toolbox for EEG, MEG, and near-infrared spectroscopy (NIRS)
analysis. Like EEGLAB, it offers pre-processing and advanced analysis methods,
such as time-frequency analysis, source reconstruction using dipoles, and non-
parametric statistical testing [Oostenveld et al. 2011]. One of the oldest and still
active EEG processing toolbox for MATLAB is Brainstorm (University of Southern
California, Los Angeles, CA, USA) [Tadel et al. 2011], incorporating the same impor-
tant features for continuous or event-related EEG data as EEGLAB. Standalone
processing tools include BrainVision Analyzer (Brain Products GmbH, Gilching,
Germany), BrainVoyager (Brain Innovation B.V., Maastricht, The Netherlands), and
LORETA (KEY Institute for Brain-MinResearch, Zurich, Switzerland) for estimating
cortical connectivity [Pascual-Marqui 2002].

Despite most of the MATLAB toolboxes being available for free, MATLAB
requires a paid license. Despite the fact that the GNU Octave project is a free
alternative to MATLAB, Octave does not support the entirety of the tools available
(such as EEGLAB), with many of the functions not properly working, including the
graphical user interface (GUI).

In the last few years, open-source Python software for exploring, visualizing, and
analyzing EEG and other neurophysiological data have been developed. A major
example is MNE-Python. MNE is tightly integrated with the core Python libraries
for scientific computation (NumPy, SciPy, Sklearn) and visualization (matplotlib
and Mayavi) [Gramfort et al. 2013]. In addition, Wyrm is a BCI toolbox written
in Python and is suitable for running online BCI experiments as well as offline
analysis of EEG data together with Mushu [Venthur and Blankertz 2012] for sig-
nal acquisition and Pyff, a BCI feedback and stimulus framework [Venthur et al.
2010].

Finally, although MATLAB has been established for many years, with a big
community, using Python has the benefits of being free and open, and it is
object-oriented, portable, and powerful (supports threading) with a fast-growing
community.
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6.2.2 Study Setup
EEG studies are notoriously tedious, both for the participant and the experimenter,
and often resulting in the collection of EEG signals indistinguishable from noise.
However, the technological advancement has made it possible for EEG to escape
the narrow boundaries of a clinical lab, and find its way into field studies and
deployments. Nonetheless, this EEG democratization often comes at the cost of
adhering to low quality standards, thus greatly affecting credibility and repro-
ducibility of results. Therefore, adequate preparation is of utmost importance
before conducting an EEG study. In the following sections, we present a concen-
trated set of best EEG practices on acquiring and analyzing EEG signals based on
the theoretical background introduced in Chapter 3.

6.2.2.1 Preparation
Before employing EEG in a study, one needs to understand what EEG exactly mea-
sures. EEG measures the potential difference (i.e., voltage difference) between
electrodes. Therefore, when an EEG headset with electrodes is worn by the user,
a reference electrode should always be placed. Typical locations of the reference is
the left/rightmastoid, the earlobe, the nose, the cheek, or the frontalmid-line elec-
trode location. Themeasured electrical potential differences (i.e., the EEG signals)
are the voltage drops between, and for each, electrode and the reference electrode.
As we have seen previously, EEG electrodes come in a variety of metallic coating in
an effort to improve conductivity. Conductive paste is anotherway one can increase
electrode conductivity in EEG, and comprises a variety of substances aiming at
reducing skin impedance when using EEG electrodes. After carefully removing
dead skin cells and hair oil with alcohol, the conductive paste is applied on the
EEG electrode, as an inset between the electrode and the scalp. As a rule of thumb,
a good impedance is considered somewhere in the range of 5–20kΩ, and the lower
the better [Kappenman and Luck 2010]. Hence, conductive paste provides the right
balance of conductivity and adhesiveness, keeping EEG electrodes in place, while
being non-toxic and easily washable. EEG electrodes that employ conductive paste
are also known as wet or gel electrodes for differentiating from dry electrodes that
do not use conductive paste. Dry electrodes are usually more pointy, in an attempt
to compensate for adhesiveness, and thus often considereduncomfortable for long
periods of measurement (Figure 6.2).

The electrode location (i.e., electrode topology) over the user’s head is defined
by the 10–20 international system [Jasper 1958]. The 10–20 system indicates the
electrode name and position based on the hemisphere and the lobes it is located
over the head. For instance, electrodes starting with the letters F, T, C, P, and O
stand for frontal, temporal, central, parietal, and occipital lobes, respectively. Next
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Figure 6.3 The 10–20 international system describing the location of scalp electrodes with letters
for each lobe and numbers for each hemisphere. Typical reference locations are above
the nose (Nz), frontal-central (FCz), ears (A1, A2), or over the mastoids (TP9, TP10).

to each letter, even numbers (2, 4, 6, 8) refer to electrode positions on the right
hemisphere, whereas odd numbers (1, 3, 5, 7) refer to electrode positions on the
left. Finally, the “z” letter next to each lobe letter (e.g., Cz) indicates the mid-line
of the head (Figure 6.3). The topology should be decided based on which areas of
the brain are expected to be activated the most during an EEG study. As a rule of
thumb, one should place the EEG electrodes closer to the brain areas most promi-
nently involved in the subsequent experiment. For example, an EEG experiment
that aims to measure visual brain activity implies altering the electrode topology
for including more electrodes on the back of the head (e.g., locations O1,O2,Oz).

6.2.2.2 Signal Acquisition
Typically, during the signal acquisition process, the EEG device, including the
amplifier, the ADC, as well as the EEG data collection software (e.g., LSL), should
be active and in continuous communication for registering the generated EEG sig-
nals. Depending on the experimental design (e.g., number of conditions, within/
between subjects), one should record the EEG signals corresponding to a period
with the minimum number of stimuli. This is intended for forming a baseline
of neutral brain activity for forming a control condition. EEG signals collected
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in the control condition will be used later for testing against an experimental
condition, where certain brain activities are expected to manifest in response to
some stimuli and are subsequently captured via EEG. For example, in the exper-
imental scenario where one wants to measure brain activity to visual stimuli,
first a neutral image (e.g., a picture of a beach) can be utilized for obtaining the
baseline (i.e., control condition). Then, the participant undergoes the experimen-
tal condition during which one is exposed to the visual stimuli under investi-
gation. Another approach for forming a baseline, but for cognitive workload, is
the n-back task. During the typical n-back task, an experimenter asks the partic-
ipant to count backwards from 100 with a step of –n (e.g., −2) [Berka et al. 2007].
This task generates sufficient workload for simulating a baseline for comparing
against a cognitively demanding experimental condition (e.g., the task of solving a
puzzle).

Often, one seeks to investigate the direct impact of specific stimuli on brain
activity rather than comparing between periods of extended brain activity (i.e.,
experimental vs. baseline conditions). Events that are considered capable of trig-
gering a direct effect on brain activity are known as event-related potentials (ERP).
ERPs are defined as the measured brain response that is the direct result of a
specific sensory, cognitive, or motor event. In a more formal and generic defi-
nition, ERP is any stereotyped electrophysiological response to a stimulus and
can be measured with EEG and MEG; however, in the case of MEG, these are
known as event-related fields (ERFs). ERPs are widely investigated in neuroscience,
cognitive psychology, and psycho-physiological research, since they are consid-
ered a reliable measure of time for the brain to process information [Allen 2002,
David et al. 2005]. For example, a well-known experiment that generates ERPs
via visual stimuli is the flashing checkerboard paradigm, typically employed for
detecting any damage or trauma in one’s visual system. A flashing checkerboard
is presented to the subject with alternating flashing patterns in a frequency
of 1–12Hz. The healthy brain response to such flashing patterns maximizes at
around 8Hz, with a healthy participant’s first response (i.e., ERP) of the visual
cortex at 50–70ms (Walsh et al. 2005). It is therefore evident that ERPs should be
recorded with an accuracy in the order of ms, and in absolute synchronization
with the employed modality that generated the stimulus (e.g., a presentation of
a series of pictures on a screen). For executed and imagined movements, ERPs are
recorded from the supplementary motor/premotor area (SMA/PMA) and primary
motor area (M1) [Romero et al. 2000]. This is very useful in neurorehabilitation
since M1 is considered a prime target of post-stroke rehabilitation [Sharma et al.
2006].
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6.2.2.3 Participant Recruitment
Normally, participants are recruited based on their desire to participate, although
previous neurological disorders need to be considered. Specifically, participants
with systemic disorders with the involvement of the central nervous system (CNS;
e.g., endocrine ormetabolic disorders), neurological disorders including traumatic
brain injury, history of childhood neurological disorders, and neurodegenera-
tive diseases (e.g., dementia, Alzheimer’s, Parkinson’s, etc.), psychiatric disorders,
alcohol and drug abuse or dependence should be excluded. Also, users who receive
CNS-active medications including any psychotropic medications, and those with
first-degree relatives with a family history of psychiatric disorders, including per-
sonality disorders and mental sub-normality, should be not admitted [Boutros
2013].

6.2.3 APosteriori Analysis
When it comes to EEG analysis and feature extraction, an extensive list of pre-
processing steps needs to be completed in order to convert raw signals to results.
In this chapter, we present the basic steps one needs to perform in a posteriori
analysis.

As an example, let us consider an MI-based BCI, a BCI that can recognize imag-
ined movements such as left-hand or right-hand movements. In this case, the two
mental states to identify are imagined left-hand movement on one side and imag-
ined right-hand movement on the other side. For identifying mental states from
EEGsignals, weutilize bandpower as typical features (i.e., the power of theEEGsig-
nal in a specific frequency band). ForMI, band power features are usually extracted
in theµ (about 8–12Hz) andβ (about 13–30Hz) frequency bands for electrodes local-
ized over the motor cortex areas of the brain (around locations C3 for right-hand
and C4 for left-hand movements, respectively) [Pfurtscheller and Neuper 2001].
Such features are then typically classified between left- or right-hand movements
using a linear classifier.

6.2.3.1 Pre-processing
The basic pre-processing steps involve the following:

Downsampling: The first step after loading the data is to downsample the sig-
nals in order to reduce the data size. Based on the Nyquist theorem mentioned
in Section 6.2.1.1, the re-sampled signal should be more than twice as large as the
highest frequency of interest. In addition, low-pass filtering is necessary before
downsampling for anti-aliasing.
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Bandpass filter: The purpose of the application of a bandpass filter is to allow fre-
quencies within a certain range to pass while rejecting (attenuating) frequencies
outside that range. It is generally recommended to use lower cutoff frequencies, for
example 0.1–1.0Hz [Luck 2005], applying also a high cutoff frequency at 50–60Hz to
remove the powerline noise.

Bad channel removal: It is common during the acquisition to have a few sensors
that are failing, with really bad connection quality between the electrode and the
scalp. This bad connection propagates the bad signals to all channels, making the
artifact removal from the signals more difficult. Bad channel removal can be done
manually through visual inspection or also using automated techniques such as
the artifact subspace reconstruction (ASR) method [Mullen et al. 2013], but it is
out of the context of this chapter. Finally, any potential missing channels need to
be interpolated in order to minimize a potential bias in the re-referencing stage.

Re-referencing: As described in Section 6.2.2.1, typical locations of the reference
is the left/right mastoid, the earlobe, and the nose. In data analysis, the average of
all electrodes is often chosen as the reference. As a rule of thumb, the position of
a reference electrode should not be close to that of an electrode where you expect
yourmain effects tomanifest. For example, the Cz is often used as a reference elec-
trode, but it should not be used if the task-related activity (e.g., MI over C3, C4) is
centered around this electrode. It is also not advisable to reference your data to an
electrode of one hemisphere, as this could introduce a lateralization bias into your
data.

Artifact removal: Electrodes pick up electrical activity from other sources in the
environment besides cortical activity. The recorded activity that is not of brain
origin is termed an “artifact” and can be divided into physiological and non-
physiological artifacts. Physiological artifacts may include cardiac pulse, respira-
tory, sweat, glossokinetic (tongue movement), eye movement (blink, spikes from
lateral eye movement), and muscle and movement artifacts. Non-physiological
artifacts include power line noise at 50–60Hz and movement of an electrode or
headset. Majorartifacts, such as big spikes from electrode or head movement, can
be removed through visual inspection of the data in addition to the application of
ICA [Makeig et al. 1995]. ICA is a computational method for separating amultivari-
ate signal into additive subcomponents, and it is widely used for removing a wide
variety of artifacts, also including the use of blind source separation [Jung et al.
2000].

Data epoching: EEG epoching is a procedure in which specific time windows
are extracted from the continuous EEG signal. These time windows are called
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“epochs,” and usually are time-locked events with respect to a stimulus (e.g., a
visual stimulus). For extracting epochs from the signal, data tagging/labeling is
necessary during acquisition, indicating specific timestamps of interest related to
the stimulus.

6.2.3.2 Feature Extraction
Thenext step inEEGsignal processing is knownas “feature extraction,”which aims
at describing the EEG signals by (ideally) a few relevant values called “features”
[Bashashati et al. 2007]. Such features should capture the information embedded
inEEGsignals that is relevant todescribe themental stateswe seek to identifywhile
rejecting the noise and other non-relevant information [Lotte et al. 2013a]. Typical
features are band power features (i.e., the power of the EEG signal in a specific fre-
quency band). For MI, band power features are usually extracted in the µ (8–12Hz)
and β (13–30Hz) frequency bands, over the motor cortices located around the C3
and C4 electrodes. Next, we get a power estimation of the filtered signal (squaring)
which we usually averagefor every second (temporal average) and logarithmize for
creating our first feature. All features extracted are usually arranged into a vector,
known as a feature vector.

6.2.3.3 Classification
As a last step, our target is to assign a class to a set of features (from the feature
vector), translating the features into commands [Lotte et al. 2007]. Each class cor-
responds to the kind of mental state identified. As explained in Chapter 4, the type
of algorithms that are dedicated into classifying the selected features are known
as “classifiers.” Typical classifiers used in BCIs include: linear classifiers, artificial
neural networks (ANNs), non-linear Bayesian classifiers, K-nearest neighbor (KNN)
classifiers, and classifier combinations [Lotte et al. 2007]. Linear classifiers include
linear discriminant analysis (LDA), regularized LDA, and support vector machines
(SVMs). Both LDA and SVM are the most popular types of classifiers for real-time
BCIs due to their low computational demandand lowcomplexity. ANNs are compu-
tational models bio-inspired from the functioning patterns of biological neurons
of the humanbrain. ANNs are arranged in layers, which can be used to approximate
any non-linear decision boundary. One of the most common types of NN currently
used for BCI is the multi-layer perceptron (MLP). Moreover, non-linear Bayesian
classifiers are instances of linear classifiers modeling the probability distributions
of each class using Bayes’ theory to select the class to assign to the current fea-
ture vector. The KNN algorithm is a non-parametric method used for assigning a
class to the current feature vector according to its nearest neighbors. Further, KNN
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could be used as an output for feature vectors or class. Finally, classifier combina-
tions are configurations which combine multiple classifiers, either by combining
their outputs and/or by training them in ways thatmaximize their outcome. Classi-
fier combinations used for BCI include boosting, voting, or stacking combination
algorithms [Lotte et al. 2007].

Merging classifiers is considered to be the best performing configuration for
EEG-based BCIs, but it comes at a computation cost as well as speed. Therefore,
merging classifiers can only be used for offline evaluations and not in real time.

6.3 Interacting with VR
Despite the increased attention that BCI technology has attracted with the launch
of low-cost commercial EEG devices, BCIs are hardly used outside laboratory envi-
ronments [Lotte et al. 2013b]. Unfortunately, BCIs are not yet as accurate as other
types of interfaces [Lotte 2012], and users require long training periods—of up to
several months—to achieve accuracy levels of 80% using cortical potentials [Wol-
paw et al. 2002]. Although accuracy varies among the different BCI paradigms,
most are not 100% accurate, require extensive training, and have low information
transfer rates and long response delays [Friedman 2017].

In the following sections, we illustrate our systematic approach toward enhanc-
ing BCI performance in interactive VR systems in three different levels: (1) the
feedback level, by illustrating the role of multimodal feedback and immersive VR;
(2) the system level, through adaptive performance based on prior training data;
and finally, (3) the user level, by highlighting the role of prior gaming experience
and demographics.

The following approaches are implemented through the MI-BCI paradigm,
since it is the only paradigm that can offer self-paced control, in that the user
can voluntarily trigger responses without the need for external stimulus evoca-
tion. In addition, MI-BCI is the only paradigm which can contribute in a novel way
to augmenting neuroplastic changes in the brain for neurorehabilitation [Dobkin
2007].

Finally, a consistent feature extraction method and classifier configuration
have been implemented across all the following sections. The extracted features
involved the µ and β band power over the motor and sensorimotor areas with the
help of spatial filters as described in Section 6.2.3.2. This was achieved by using a
common spatial patterns (CSPs) filter. CSP is a spatial filter that helps in maximiz-
ing the difference between the signals of the two classes (e.g., left- and right-hand
MI) which have maximum differences in variance. Next, for classification, an LDA
classifier was used. The LDA is used due to the very low computational require-
ments, as described in Section 6.2.3.3, rendering it ideal in generalizing for unseen
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data, and thus establishing it as the most used classifier for BCI design [Lotte
2014a].

6.3.1 Feedback: Designing VR for BCI interaction
In order to be able to harness the benefits of BCI in interactive systems, two ques-
tionsneed to be addressed: (a) howcanwe increase user performance of naïve users
through immersive VR?, and (b) how can we engage the activation of specific brain
areas through multi-modal feedback?

6.3.1.1 Effect of Immersive VR
Previous research in learning states demonstrates that a poorly designed feedback
can actually deteriorate motivation and impede successful learning [Shute 2008].
On the other hand, providing extensive feedback to the user can lead to efficient
and high-quality learning [Hattie and Timperley 2007]. Lotte et al. recommended
a set of guidelines for a good instructional design in BCI training as follows: (1) the
user should only be presented with the correct classified action for enhancing
the feeling of competence; (2) a simplified and intuitive task should be provided;
(3) the task should be meaningful and self-explanatory; (4) it should be challeng-
ing but achievable, with feedback on the progress of achievement; and finally (5) it
should be in an engaging three-dimensional (3D) virtual environment [Lotte et al.
2013b].

Recent findings with the use of virtual arms have shown that the combination
ofmotor priming (physical rehearsal of amovement) preceding BCI-VRMI training
can improve performance as well as the capacity to modulate and enhance senso-
rimotor brain activity rhythms [Vourvopoulos and Bermúdez i Badia 2016a]. The
protocol consisted of three BCI conditions to which users were exposed in a ran-
domized order, and their EEG activation patterns were then also compared to the
activity during overt motor-execution (see Figure 6.4).

By exposing users to three BCI training conditions in a within-subject design,
a repeated-measures analysis of variance (ANOVA) (see Chapter 2) revealed statis-
tically significant differences across conditions for: α (F[2.524, 20.191]= 4.800, p<

0.05) andβ (F[1.599, 12.796]= 7.541, p< 0.05) bands (see Figure 6.5). In these results,
there are two control conditions. First is the the extracted EEG data during motor
execution (see “Motor” in Figure 6.4), and second is the control condition is the
Graz standard feedback through arrows and bars (see “Control” in Figure 6.4).

α andβ bands aremotor-related bands and show that the brain activation of VR
and virtual reality with motor priming (VRMP) conditions is really close to overt
motor execution (“Motor”). In addition, the differences between α and β bands
compared to the Graz feedback (“Control”) is of high importance for BCI training,
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Figure 6.4 BCI training conditions. (a) VRMP: the user is performing motor priming by mapping
his/her hand movements into the virtual environment. (b) VR: the user has to perform
training through simultaneousmotor action observation andMI. (c) Control: MI train-
ing with the Graz standard feedback through arrows and bars. Figure adapted from
Vourvopoulos and Bermúdez i Badia [2016b].

Figure 6.5 Power of α and β EEG bandmodulation during BCI training. *p< 0.05. Figure adapted
from Vourvopoulos and Bermúdez i Badia [2016b].

since VR is closer to actual movement compared to abstract feedback. This shows
that there is a better correspondence to cortical activation of sensorimotor areas
during voluntary movement [Jeannerod and Frak 1999].

Finally, performance in terms of the classification score revealed that the mul-
timodal setup with motor priming condition (VRMP) provided the highest perfor-
mance (median [Mdn] = 65.8, interquartile range [IQR] = 3.32) when compared
with the VR only condition (Mdn = 64.5, IQR = 5.41) and control condition with
the traditional feedback (Mdn = 62.3, IQR = 7.63) (see Figure 6.6).

These findings highlight the effect of immersive VR in the evoked EEG activ-
ity during MI, the incremental tendency in classification accuracy, and also the
importance of using VR in ecologically valid BCI training. This means that BCI
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Figure 6.6 LDA classifier score. Calibration score of the LDA classifier illustrating the ability of the
classifier to distinguish the left or right imaginative hand movement. Figure adapted
from Vourvopoulos and Bermúdez i Badia [2016b].

feedback not only needs to be related to the mental strategy used during training
(e.g., reach-and-grasp), but it should also be consistent in delivering similar visual
stimuli.

6.3.1.2 Effect of Multi-modal Feedback
To date, there is not a holistic approach in BCI-MI training that combines the
advantages of different feedback modalities (e.g., immersive VR environment),
and training approaches (e.g., motor priming preceding motor observation) and
motivational mechanisms (game-like tasks) [Vourvopoulos and Bermúdez i Badia
2016b]. To address current limitations, we developedNeuRow, a novel BCI-VR train-
ing paradigm. NeuRow combines the advantages of different feedback modalities
(immersive VR environment, vibrotactile feedback), training approaches (motor
priming preceding motor observation), and motivational mechanisms (game-like
tasks), while incorporating important design features from the aforementioned
recommended guidelines [Lotte et al. 2013b].

Refined training in VR: The training protocol was re-designed and adapted
based on the Graz-BCI paradigm [Pfurtscheller et al. 2003], substituting the stan-
dard feedback presented (directional arrows for left–right MI) by multi-modal
VR feedback (movement of virtual hands). The first step of the training con-
sisted of the acquisition of the raw EEG data to train a linear classifier to dis-
tinguish right and left imagined hand movements. Throughout the training
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Figure 6.7 Experimental setup (1) EEG cap with eight active electrodes, (2) head mounted display
(HMD), (3) vibrotactile modules, (4) VR feedback. Figure adapted from Vourvopoulos
[2018].

session, the user performs mental imagery of the corresponding hand (based
on the presented stimuli). For each hand, the user is stimulated visually (VR
action observation), auditorily, and haptically through the vibration on the cor-
responding hand (Figure 6.7). The training session was configured to acquire
data in 24 blocks (epochs) per class (right- or left-hand imagery) in a randomized
order.

In terms of classification performance, an independent-samples t-test revealed
that the NeuRow BCI training paradigm has a significantly higher score (µ = 76,
standard deviation [SD] = 3) compared to non-VR studies (µ = 68.2, SD = 7.7)
with similar feature extraction and classification configurations, t(18)= 2.7195, p=
0.0141 (Figure 6.8). These data support the hypothesis of a combined immersive VR
and vibrotactile feedback,which also contributes tomore distinct activation of sen-
sorimotor areas of the brain. This in turn can also lead to increased performance
and learning [Sigrist et al. 2013].

Although highly immersive, in current MI-BCI interaction users still have to
undergo long, tiresome and complex periods of training, so that EEG classification
score can reach acceptable performance rates. First time users, experience very low
classification scores, being unable to have satisfactory control of the task in VR.
Through immersive VR, we can increase performance in relation to abstract, non-
VR feedback, but the learning curve remains long. In order to increase learning
speed in first-time users, an adaptive middle layer was developed for filtering out
misclassified behavior during interaction.
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Figure 6.8 Significant differences of accuracy of performance in pure MI-based BCI studies using
two classes (left- and right-hand imagery) with respect to LDA classification in VR
and non-VR setup. VR group is consisted from data acquired through NeuRow [Vour-
vopoulos et al. 2016b], while non-VR groups from studies with reported classification
performance [Obermaier et al. 2001, Garcia et al. 2003, Boostani and Moradi 2004,
Solhjoo and Moradi 2004] (*p < 0.05).

6.3.2 System: Adaptive Technologies for Individualized BCI–VR Interaction
Moving to a second level, the main target is to increase the performance of first
time users, with minimal exposure to BCI training. By following the next stage of
NeuRow and immersive VR training, we created the Adaptive Performance Engine
(APE) module. The APE aims at adapting the BCI interaction to each user in order
to maximize the level of control on their actions, whatever their performance level
is [Ferreira et al. 2015]. Hence, satisfactory performance rates can be guaranteed
by softening decisions—making them probabilistic and non-time-constrained—
depending on the confidence level on the user’s training data.

The APE is composed by two main components: (a) a Bayesian inference layer
(BIL) and (b) a finite state machine (FSM). The BIL was used to formulate the raw
classifier input into a model, where we translate the continuous BCI classification
data (e.g., hyperplane distance between two classes) into probability values (Equa-
tion 6.1). BIL was chosen since it is a simple computational approach and more
efficient when compared to other supervised learning techniques such as ANNs.
As for decision-making, an FSM was used because of its efficiency and non-linear
properties (Figure 6.9).

P(i | LDAoutput) = MIi(LDAoutput,µi,σi) ∗ Pi∑
jMIj(LDAoutput,µj,σj)

(6.1)
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Figure 6.9 APE state transition diagram. Reproduced with permission of Springer Nature
SwitzerlandAG from Ferreira et al. [2015].

The role of the FSM is to transform binary classifications—such as left versus
right MI—into seven evidence-based states (Si). It is composed of seven states,
a neutral (S0) and three for each class (S1/–1, S2/–2, S3/–3). Each state has a transi-
tion threshold associated with it (w1, w2, w3), and can only transition to one of the
nearest neighbors, or stay in the same state (Figure 6.9).

APE’s results compared with other classifier performance datasets have dis-
played an increase in performance of upto 20% when combined with LDA in a
two-class MI paradigm [Ferreira et al. 2015]. By combining the use of immersive
VR environment, sensory stimulation and adaptive performance, we can provide
a holistic approach toward MI-driven BCIs for interactive systems, enhancing not
only task performance but also sense of competence, which eventually could result
in stronger learning [Vourvopoulos et al. 2019a].

Comparing the APE with simple LDA, we could identify a set of differences. In
terms of control, Figure 6.10(i) illustrates the NeuRow boat trajectories resulting
from the raw LDA control (blue) compared with the APE output (orange) for the
same task, and with the same targets on fixed positions. The trajectory with APE
is smoother than the raw LDA, while it is also visible in the APE trial, users could
perform both left and right turns equally, while the raw LDA trajectory is gener-
ally dominated by one hemisphere, resulting in frequent rotation in one direction.
Moreover, the improvement in control is also reflected by the number of sudden
trajectory changes or “spins” during navigation, the game score and the reported
sense of control by the users (see Figure 6.10(ii)).

Regardless the different feedback mechanisms and data processing pipelines,
yet a major limitation with MI-BCI is based on a user level. In particular, the lack
of the user ability to produce vivid MI and reliable EEG patterns, described as BCI
illiteracy. This inability of the user to produce vivid mental images of movement
results in poor BCI performance [Allison andNeuper 2010]. To date,most of theBCI
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Figure 6.10 (i) Example of the boat trajectory during raw LDA classification output versus APE
output, (ii) in-game data and self-report of control. (a) Number of boat spins (180°
rotation), (b) game score in terms of flags captured, (c) reported sense of control.
Reproduced with permission of Springer Nature from Vourvopoulos et al. [2019a].

studies have been focused on the signal processing and machine learning (ML)
domain, not including the user in the loop. To address this, a set of studies was
designed attempting to identify traits in the user profile and to ascertain if certain
traits or prior experience or demographics can be reflected in BCI performance and
influence EEG rhythms activation.

6.3.3 User: Understanding User Characteristics in BCI Interaction
To identify how different user profiles, impact BCI performance, this study investi-
gated (1) the role of prior gaming experience [Vourvopoulos et al. 2016a] and (2) user
profile and demographics [Vourvopoulos et al. 2017]. Our aim is to examine the
effect that gaming experience has on brain patternmodulation capacity duringMI
training, and to identify the elements that contribute to high BCI control and how
the user profile affects BCI performance.

6.3.3.1 Prior Gaming Experience
Past research has shown that users regularly exposed to video games have
improved over time their visual and spatial attention, memory, mental rotation
abilities [Green and Bavelier 2003, Feng et al. 2007], and enhanced sensorimo-
tor learning thus, enabling better performance in tasks with consistent and pre-
dictable structure [Gozli et al. 2014]. Extensive video-game practice improves the
efficiency of movement control brain networks and visuomotor skills of the users
[Granek et al. 2010]. Based on these findings, our hypothesis is that experienced
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Figure 6.11 Headset setup and feedback. (a) User setup with a HMD and an EEG cap with the elec-
trodes over the motor and sensorimotor cortices: Frontal-central (FC3, FC4), central
(C3, C4, C5, C6), and central-parietal (CP3, CP4). (b) HMD is used for displaying the
“Graz” paradigm. Reproduced with permission of Springer Nature from Vourvopoulos
et al. [2016a].

gamers could have better performance in MI-BCI training due to enhanced senso-
rimotor learning derived from gaming [Vourvopoulos et al. 2016a].

To assess this, 20 participants were recruited and grouped based on their
gaming experience, then clustered into “Hardcore” and “Moderate” gamers
(Figure 6.11). Each group was exposed in BCI training using the Graz paradigm
[Pfurtscheller et al. 2003] followed by an online session. The classic “Graz” MI
paradigm consists of a fixation cross and two directional arrows, instructing the
user to perform left or right MI after the cue. During training, and for each arrow,
the EEG data are epoched (collection of time-locked events) for left or right MI tri-
als followed by feature extraction, as mentioned in Section 6.2.3.2. After training,
an online session was followed by acquiring real-time EEG data from the users for
assessing how well the trained classifier performed with new data.

From the collected data, important user traits have been identified that can be
utilized in the BCI training design within a gamified task. So far, findings have
indicated (1) contrasts of different user-groups over time, and (2) the relation-
ship between electro-physiological datawith gaming experience, anddemographic
data.

From the demographic data, gender-related correlations can be identified,
strongly associated with all EEG rhythms in both training and online tasks.
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Handedness was related mostly with EEG activity modulation and asymmetry
through the online session. A full correlations table can be found in Vourvopoulos
et al. [2016a].

Users who prefer violent and/or action games have an increased ability to mod-
ulate all EEG rhythms in both training and online sessions. Competitiveness and
preference to violent/action games were found to be significant predictors of the
EEG rhythmmodulation that is mostly activated duringMI (i.e., α and β rhythms).
Furthermore, mild video game addiction (those who play games over many hours
on a daily basis) has been identified as a possible predictor of increased hemi-
spheric asymmetry that could lead to increased BCI performance (Figure 6.12). The
predictors table can be found at Vourvopoulos et al. [2016a].

Overall, it was revealed that the player’s traits influence EEG rhythms activity
patterns during an MI task, while highlighting the effects of video-game practice
and player profile in BCI performance.

6.3.3.2 User Profile
In addition to the previous findings illustrating that prior game experience has an
effect on faster learning, the impact of the user profile and user experience has so
far been underexplored. Information about a user profile can be vital for under-
standing how a BCI system can be personalized and used for gaming and other
purposes. Complementing previous findings, and based on previous research on
realistic BCI feedback, the participant’s role (students vs. employees) has been
investigated, along with the way they perceived the task at hand, their gender, and
time of the day in relation to their performance [Vourvopoulos et al. 2017].

In terms of gender, the sample was divided between the two genders, and the
two conditions were assessed separately. Results showed differences on EEG pat-
terns, being consistent with previous research [Davidson et al. 1976, Kober and
Neuper 2011, Vourvopoulos et al. 2016a]. For the two different training conditions,
females reported less concentration on the task.

In terms of feedback, although prior research illustrated the superiority of real-
istic feedback over a more abstract feedback in MI training [Vourvopoulos and
Bermúdez i Badia 2016b], this study did not confirm whether video stimulation
duringMI training improves a user’s performance over the abstract feedback. Find-
ings showed that a reported loss of self-consciousness was experienced during the
session, following the abstract feedback session (i.e., arrows), instead of the video
feedback.

Concerning the difference between user roles (i.e., students vs. employees), cur-
rent findings show that employees produced increasedEEGactivity during training
(for α and θ bands). On the other hand, the reported workload during the game
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Figure 6.12 (a) Differences between “Hardcore” and “Moderate” groups in all EEG rhythms
(for training, online task, hemispheric asymmetry), LDA classification performance,
engagement index (EI) and kinesthetic imagery (KI). (b) Contrasts between first and
last BCI session for both groups for the same type of data. Reproduced with permission
of Springer Nature from Vourvopoulos et al. [2016a].

play was lower than that of students. Another important finding is the differences
in time of the day in terms of the extracted EI and the γ band, concluding that time
of the day influences engagement.

Finally, non-parametric Spearman correlations, revealed significant relation-
ships in EEG bands (see Table 6.1). In particular, for α with the NASA Task
Load Index (TLX): effort (rs = 0.348, p < 0.05, N = 34), and Game Engagement
Questionnaire (GEQ): unambiguious feedback (rs = −0.355, p < 0.05, N = 34). θ is
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Table 6.1 EEG-band power correlations (p < 0.05). Adapted from Vourvopoulos et al. [2017]

TLX:Effort GEQ:
Unambiguous
feedback

GEQ:
Transformation

of time

GEQ:
Autotelic
experience

PQ:How
quickly did you
adjust to the
experience

α 0.348 0.355 − − −
θ 0.365 −0.348 0.344 0.348 −
γ − − − − −
EI − − − − 0.466

related with TLX: effort (rs = 0.365, p< 0.05,N = 34), GEQ: unambiguious feedback
(rs = −0.348, p < 0.05, N = 34), GEQ: transformation of time (rs = 0.344, p < 0.05,
N = 34), and GEQ: autotelic experience (rs = −0.348, p < 0.05, N = 34). Finally, EI
as extracted from EEG, is correlated only with the Presence Questionnaire (PQ): 7.
“How quickly did you adjust to the experience?” (rs = 0.466, p < 0.05, N = 34).

Overall, the results showcased that gender, role, and time of the day can have
a significant effect not only on EEG modulation, but also on reported workload
and loss of self-consciousness during game play. This demonstrates how sensitive
BCI interaction can be, it is easily affected by insufficient attention due to user
distraction or frustration.

6.4 Conclusions
The design of interactive systems which bypass the central nervous system—in the
form of BCIs—has inherently major limitations due to its complexity. BCIs have
arguably low usability levels, while they cannot be widely used like any other type
of computer interface. In particular, this is due to their low robustness and relia-
bility, as well as their often long calibration and training sessions, especially in the
case of MI paradigms. Even though high satisfaction is reported with the currently
available BCI systems—one could describe it as a novelty effect—a clear demand
for BCI improvements is strongly reported by end-users.

Due to the noisy nature of EEG, ML leverages the potential of EEG-based BCI
systems by giving them he ability to “learn” and progressively improve perfor-
mance from non-stationary data. This data is then used to adapt the system to the
specific brain signals of each user. In conjunction with ML, modern high resolu-
tion VR technology has a big impact in interactive systems. One could argue that
the virtually or artificially perceived reality is resulting in higher levels of immer-
sion and presence, that could change the way brain–computer interaction is used.
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With immersive VR, more distinct brain patterns are evoked, resulting in better
classification accuracy in ML algorithms by providing better features.

Altogether, through this chapter, an introduction to brain–computer interac-
tion has been presented in an end-to-end approach for VR. We have illustrated
our systematic approach towards enhancing BCI performance in interactive sys-
tems in terms of (1) feedback: illustrating the role of multimodal feedback and
immersive VR; (2) system: incorporating adaptive performance for first-time users;
and finally; (3) user profile: investigating the user’s role (demographics, gaming
experience, etc.) in the overall brain–computer interaction in a closed-feedback
loop.

Building on top of these findings, researchers can incorporate not only guide-
lines for successful BCI interaction but also integrate their tools through the
freely available open-source tools and proposed BCI paradigm derived from this
research.

6.5 Follow-up Questions
For implementing an EEG processing pipeline and train BCI ML models as
described in Section 6.2.3, multiple datasets can be used from the BCI competi-
tion database: www.bbci.de/competition/. The BCI competition datasets aim to
provide high-quality neuroscientific data for open access to the scientific commu-
nity. Moreover, it is considered a standard for testing methods and benchmarking
ML algorithms for BCIs.

Based on the preprocessing and classification steps for MI classification as
described in Section 6.2.3, explore the following:

1. How well does your classifier performance evolve when you train it with
additional classes (e.g., 2 vs. 3 vs. 4)?

2. How well your model generalizes when you add more features (e.g., addi-
tional EEG bands)?

3. Are the MI EEG features the same for all users?

4. Can a classifier trained bymultiple users data performbetter than a classifier
trained with individual training data?

6.6 Further Reading
Formore on EEG background andmeasurement you can find it at Fernando Lopez
da Silva et al. [2010], for EEG processing see Lotte [2014b] and EEG classification
through OpenVibe see Bougrain and Serrière [2016]. More on BCI applications see
McFarland and Vaughan [2016], BCI platforms see Brunner et al. [2013], Lindgren

http://www.bbci.de/competition/
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and Lécuyer [2016], BCI for interaction with games see Lécuyer [2016] and more on
implementation of BCIs with VR for neurorehabilitation see Vourvopoulos et al.
[2019b, 2019d]. Finally, for common implementation pitfalls in BCI design, see
Chavarriaga et al. [2017].
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