
Enhancing Motor-Imagery Brain-Computer

Interface Training With Embodied Virtual Reality:

A Pilot Study With Older Adults

Athanasios Vourvopoulos∗, Diego Andrés Blanco-Mora†, Audrey Aldridge‡, Carolina Jorge†, Patricia Figueiredo∗

and Sergi Bermudez i Badia†

∗Institute for Systems and Robotics - Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
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Abstract—Electroencephalography-based Brain-Computer In-
terfaces (BCI’s) can provide an alternative non-muscular channel
of control to stroke survivors, especially to those who lack
volitional movement. This is achieved through motor-imagery
(MI) practice, involving the activation of motor-related brain
regions. MI is reinforced in a closed-loop BCI through rewarding
feedback, and it has been shown to be able to strengthen
key motor pathways. Recently, growing evidence of the positive
impact of virtual reality (VR) has accumulated. When combined
with BCI, VR can provide patients with a safe simulated
environment for rehabilitation training, which could be adapted
to real-world scenarios. However, not all users have the ability
to sufficiently modulate their brain activity for control of a
MI-BCI, a problem known as BCI illiteracy. In this study, we
investigate the role of embodied feedback and how we can help
elderly adults increase their BCI performance during MI-BCI
training in VR. The elderly population was selected to age-
match with the typical stroke age-range demographic, accounting
for age-related confounds. Participants have received MI-BCI
training in two conditions: Abstract feedback (Graz BCI), and
embodied feedback (NeuRow VR-BCI). Current results show
differences between the two conditions in terms of Event-Related
Desynchronization (ERD), lateralization of ERD and classifier
performance in terms of arm discriminability.
Index Terms—Brain-Computer Interfaces, Motor-Imagery,

Virtual Reality, Embodiment

I. INTRODUCTION

In restorative Brain-Computer Interfaces (BCI’s), the use

of Motor-Imagery (MI) training is commonly exploited. Con-

cretely, MI is the mental rehearsal of a movement, and it

can activate the primary sensorimotor area [1]. Moreover, MI

practice leads into the modulation of the sensorimotor (SMR)

rhythms within the range of Alpha (8-12 Hz) and Beta (13-

28 Hz) frequency bands, over the contralateral hemisphere.

This band modulation, due to motor behavior, can be captured

through Electroencephalography (EEG), and it is known as

event-related desynchronization (ERD) [2]. In a closed-loop

MI-BCI paradigm, these signals can be reinforced by BCI

feedback, so they can be used to strengthen key motor path-

ways that are thought to support motor recovery after stroke

[3], [4].

A number of recent clinical studies indicate that repeated

use of such BCI’s might trigger neurological recovery that

could lead to improvement in motor function [5]. Moreover,

there is increasing evidence that BCI’s could promote long-

lasting improvements in motor function in chronic stroke

patients, although more evidence is necessary for providing

further proof of clinical impact [6].

Recently, growing evidence of the positive impact of virtual

reality (VR) in BCI training is accumulating [7]. Specifically,

VR can provide a safe simulated environment, under controlled

conditions, where patients can train in real-world scenarios

[8]. Moreover, VR can deliver embodied feedback to the user

through a virtual avatar. With the use of a virtual body, VR

can induce illusions of movement and corporal awareness [9],

shown to be able to enhance motor learning [10]. This is

important in rehabilitation, since patients with no volitional

movement, could benefit from embodied VR training.

Nonetheless, a commonly reported limitation in MI-BCI’s

is the inability of a set of participants to modulate sufficiently

their sensorimotor rhythms, commonly referred to as BCI

illiteracy [11]. This was also reinforced by recent studies

showing that the vividness of motor imagery of the users

can have a significant impact on MI-BCI performance [12].

Therefore, it is more difficult for users to interface with MI-

BCI training due to the low usability levels, caused by the low

accuracy of the BCI.

Latest findings in improving performance in MI-BCI con-

trol, highlight the importance of visual and tactile feedback

[13], task gamification [14], [15], VR modality and electrode

number [16], motor-priming prior to the MI-BCI training

session [17], but also, further evidence for the benefits of

embodied feedback during BCI training has been accumulated

[18]. Specifically, prior research has shown that MI skills can

be augmented by using humanlike hands [19], and that the

sense of embodiment in VR can be enhanced by multisensory

feedback related to body movements [20].

Moreover, besides the impact that the sensorimotor stimula-

tion of the user has during MI, prior research has highlighted
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Fig. 1. A. Experimental setup: (i) 32 active electrodes EEG system; (ii) HMD VR; (iii) VR controllers, including custom support, B. MI trial of the cue-based
training protocol: 2-seconds of baseline, followed by 1-second cue (directional arrow) for left or right-hand, and 4 seconds of MI. (i) Abstract feedback
condition with directional arrow and (ii) the NeuRow condition, with movement of the virtual arm after the cue.

the importance of additional predictors related to MI-BCI

performance. Specifically, user-technology relationship, user

attention, user spatial abilities, and gender [21], [22].

Finally, given the age-related differences, the current body

of literature does not report the impact of MI-BCI training

in the elderly population. Further, reports of ERD measures

during embodied VR training is scarce. Thus, we argue that

in restorative MI-BCI it is crucial to account for the afore-

mentioned limitations, since most of the target demographic

is composed of elderly adults, with no prior experience in

most of the technological aspects of a BCI system. Hence, the

aim of this study is to identify and validate ways to increase

performance in MI-BCI training through embodied feedback

in VR in older adults.

II. METHODS

In this study, we have implemented an MI-BCI protocol

used currently in clinical interventions with chronic stroke

patients [7]. All participants received a single session of

MI-BCI training followed by functional Magnetic Resonance

Imaging (fMRI).

A. Participants

We recruited 5 elderly participants (4 female), right-handed,

with an average age of 51 years (SD = 5.5). All participants

had no prior known neurological disorders, and no prior

experience with BCI’s or VR. Finally, from every participant,

a written informed consent was obtained upon recruitment in

accordance with the 1964 Declaration of Helsinki.

B. Experimental Setup

1) EEG amplifier: For EEG data acquisition, the g.Nautilus

(g.tec, Graz, Austria) system was used (Figure 1A(i)).

g.Nautilus has 32 EEG channels, at 24-bit of resolution and a

sampling rate of 500 Hz. The spatial distribution of the elec-

trodes followed the 10–20 EEG system. The EEG amplifier

was interfaced wirelessly to a dedicated desktop computer.

2) Head-Mounted Display: For delivering the visual feed-

back to the users, the Oculus Rift CV1 head-mounted display

(HMD) was used (Reality Labs – formerly Oculus from

Facebook, Inc., United States). The HMD consists of a 2 x

AMOLED binocular display, with a 1080x1200 resolution per-

eye, 87° horizontal Field of View (FoV), and 6 degrees-of-

freedom (DoF) tracking (Figure 1A(ii)).

C. BCI-VR Training Protocol

The MI-BCI training session involved two conditions in a

randomized order: Abstract feedback and embodied feedback.

The Abstract feedback was based on the Graz-BCI training

paradigm [23], with participants visually instructed through

directional arrows for when to perform left or right MI (Figure

1B(i)). The embodied feedback was based on NeuRow VR-

BCI paradigm [15], with the same protocol as the Abstract

feedback, but with virtual hands rendered from a first-person

perspective, and moving according to the arrow direction after

the cue (Figure 1B(ii)). The training protocol for acquiring the

BCI calibration data was cue-based and involved 40 trials (20

per hand) in a randomized order, with an initial baseline of

2-seconds, followed by 1-second cue and 4-seconds of the MI

task (Figure 1B).

D. Assessment Scales

Besides demographic data (age, sex, schooling years), a set

of clinical and non-clinical scales were used, matching the

same scales used in current clinical interventions. Specifically,

for assessing cognitive disabilities, the Montreal Cognitive

Assessment (MoCA) was used [24], and the Beck inven-

tory [25] for assessing depression. Moreover, MI ability was

assessed through the kinesthetic and visual-motor imagery
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Fig. 2. Group results of the ERD over C3,C4 electrodes, (L)eft and (R)ight MI trials, from Alpha (top) and Beta (bottom) bands. Left sub-figure: ERD over
time and standard deviation for Abstract (blue shade), and NeuRow (red shade) conditions. Right sub-figure: the average ERD of each subject. *indicates
significant differences (p<0.05).

questionnaire (KVMIQ) [26]. Finally, although the sample was

consisted by healthy participants, the clinical scales were used

to serve as a baseline when compared to patients.

E. EEG Analysis

For the post-hoc analysis, EEG signals were processed using

MATLAB R2016b (The MathWorks, MA, United States) and

the EEGLAB toolbox v2020.0 [27].

1) Pre-processing: All signals were initially down-sampled

to 128Hz to reduce the data size and remove unnecessary

information above the Nyquist frequency, followed by band-

pass filtering between 1-40 Hz. For rejecting artifacts and

bad channels, we applied the offline version of the Artifact

Subspace Reconstruction (ASR) method [28]. Further, after in-

terpolating any missing channels, we re-referenced the data to

common average and epoched the data between left and right

MI trials. Moreover, we performed an Independent Component

Analysis (ICA) [29] for removing all unwanted components

from the signal. For this, we employed also IClabel [30],

an automated method that is using a trained classifier for

EEG independent components. In our pipeline, we followed a

conservative approach, by removing only ”Muscle” and ”Eye”

components with a confidence level of greater or equal to 90%

probability.

2) ERD power: The event-related spectral perturba-

tion (ERSP) was calculated over the epoched data as

a time/frequency representation of the event-related syn-

chronization/desynchronization (ERS/ERD) across the Alpha

(8–12Hz) and Beta (13 − 28Hz) bands. ERSP acts as a

generalization of the ERS/ERD [31], hence, we computed

also the ERD as a percentage of the drop of power relative

to baseline according to Pfurtscheller et al. [32]. Here, we

focus on the analysis of the C3 and C4 electrodes, since

they are located over the sensorimotor cortices and are the

ones who show characteristic patterns of Alpha and Beta ERD

during MI [33]. Finally, we extracted the Median ERD value

between 1000ms (after the cue) and 4000ms (end of trial)

for building an ERD distribution per condition for further

statistical analysis (Figure 1).

3) Lateralization Index: Lateralization between hemi-

spheres is generally assessed by a lateralization index (LI),

and it is commonly used to quantify the asymmetry of neural

activation intensity in brain imaging studies. In this study,

LI was computed with ERD from the C3 and C4 electrodes.

Specifically, contralateral electrode to the MI side (C3 for right

and C4 for left MI), was subtracted from that at ipsilateral

electrodes [34]. Finally, the LI was computed as the average

of the right and left side differences. If the LI value is positive,

it indicates a more contralateral desynchronization during MI.

F. Offline BCI Performance

For assessing the discriminability of the features per con-

dition, we used the pre-processed data. Since we wanted to

exclude any other confounds that could affect the evoked ERD

in a feedback loop (e.g. miss classification rate), we only

used the training session data. Specifically, we computed 6

Common Spatial Patterns (CSP) filters between the Alpha and

Beta bands (8-28 Hz). CSP is a feature extraction method that

can create spatial filters able to maximize the discriminability

of two classes [35], and it is considered one of the most

popular and efficient algorithm for BCI design [36]. Next, we

designed a classification pipeline with a monte-carlo cross-

validation method using 10 re-shuffling and random splitting

iterations for training an LDA classifier. The final classification

accuracy (%) was calculated as the average score of the cross-

validation.
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G. Statistical Tests

Initially, for assessing the normality of the data, we per-

formed a Kolmogorov-Smirnov test. Since data distributions

were not normal, but also due to the small sample size,

non-parametric tests were used. Specifically, for assessing the

ERD differences between the two conditions, the Wilcoxon

signed-rank test was employed. Next, we performed Pearson

correlations between the questionnaires, the ERD power of

C3,C4 electrodes, and LI. For all statistical comparisons, the

significance level was set to 5% (p < 0.05) and were computed

using MATLAB R2016b.

III. RESULTS

Here, we report the EEG results during MI-BCI training be-

tween both conditions, and specifically the median ERD power

of Alpha (8− 12Hz) and Beta (13− 28Hz) bands, from both

left and right MI trials, from the ipsilateral and contralateral

electrodes C3, C4. Moreover, we report the lateralization of

the ERD and the classifier discriminability in terms of LDA

performance. Finally, we performed a correlation analysis

between the extracted ERD measures and the questionnaire

data.

A. Event-Related Desynchronization (ERD)

In terms of Alpha band, we observe differences in ERD dur-

ing the NeuRow condition compared to Abstract MI for both

left and right trials. Specifically, for contralateral electrodes

during right MI, C3 (Abstract : Mdn = −17.5%, SD =

31%;NeuRow : Mdn = −20.9%, SD = 26%) ERD has

small changes, but with no statistically significant differences

(Z = 1.2136, p = 0.22), while for left MI, C4 (Abstract :

Mdn = −2.7%, SD = 20.3%;NeuRow : Mdn =

−22.4%, SD = 28.9%), NeuRow has significantly lower ERD

(Z = 2.0226, p = 0.04). Similarly, for ipsilateral electrodes,

during left MI, C3 (Abstract : Mdn = 1.3824%, SD =

28.1%;NeuRow : Mdn = −12%, SD = 31.5%), has

lower ERD during NeuRow but not statistically significant,

(Z = 1.7529, p = 0.0796). Nonetheless, for right MI over

C4 (Abstract : Mdn = −4.1%, SD = 32.4%;NeuRow :

Mdn = −29.8%, SD = 9.9%), ERD during NeuRow is

significantly lower than Abstract MI (Z = 2.0223, p = 0.04)

(Figure 2).

In Beta band, we observe also differences between condi-

tions. For contralateral electrodes during right MI over C3

(Abstract : Mdn = −10.3%, SD = 10%;NeuRow :

Mdn = −34.4%, SD = 22%), ERD is lower during NeuRow

but not significantly different (Z = 1.4832, p = 0.13).

Moreover, and during left MI over C4 (Abstract : Mdn =

1.07%, SD = 22%;NeuRow : Mdn = −13.7%, SD =

16.1%), ERD is statistically significant lower ERD during

NeuRow (Z = 2.0226, p = 0.04). Further, for ipsilateral

electrodes, during right MI over C4 (Abstract : Mdn =

−12.4%, SD = 22.4%;NeuRow : Mdn = −20.5%, SD =

16.4%), ERD is lower during the NeuRow condition but not

significantly (Z = 0.6742, p = 0.5). Nonetheless, C3 during

left MI is the only case where Abstract MI has lower ERD

compared to NeuRow (Abstract : Mdn = −11.4%, SD =

24.2%;NeuRow : Mdn = −11.2%, SD = 29.3%) although

not significant (Z = 0.4045, p = 0.68) (Figure 2).

B. ERD Lateralization

In terms of lateralization of ERD, in the Alpha band

we observe small differences with almost similar median

LI between conditions (Abstract : Mdn = 1.21, SD =

16.7;NeuRow : Mdn = 1.68, SD = 15.2), although,

we observe a higher lateralization in the NeuRow condition

in the Beta ERD lateralization (Abstract : −5.18, SD =

10.6;NeuRow : Mdn = 8.3, SD = 13) (Figure 3). Nonethe-

less, the Wilcoxon Signed-Rank test yielded no statistically

significant differences for both Alpha (Z = 1.2136, p = 0.22),

and Beta (Z = −1.7529, p = 0.08).

Fig. 3. Distributions across participants of Lateralization Indices for Alpha
and Beta ERD, between Abstract and NeuRow conditions. Positive values
indicate increased contralateral ERD.

C. BCI Performance

In terms of BCI performance, we observe an increased LDA

classification score in favor of the NeuRow condition, meaning

that the classifier was able to discriminate better the features

from NeuRow than the Abstract MI (Abstract : Mdn =

52.5%, SD = 10.3%;NeuRow : Mdn = 65%, SD =

13.6%) (Figure 4). Nonetheless, no statistically significant

differences were found (Z = −1.2136, p = 0.22).

D. Relationship with Questionnaires

The correlation analysis did not yield any significant rela-

tionships between the extracted ERD and LI with the demo-

graphics or assessment scales. Nonetheless, we can observe

from the coefficients in Table I, that NeuRow has stronger r

than Abstract feedback in Age, MoCA and KVMIQ. More-

over, from the r sign, we can observe some interesting trends

between ERD and Age but due to the absence of statistical

significance and small sample size, we cannot claim an effect.
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Fig. 4. LDA classifier performance distributions of the mean classification
accuracy of all 5 participants in both conditions.

TABLE I
PEARSON CORRELATION COEFFICIENTS (R) OF ERD POWER AND LI WITH

PARTICIPANT DEMOGRAPHICS AND CLINICAL SCALES.

Age Schooling Depression MoCA KVMIQ

C3 L 0.67 -0.63 0.09 -0.49 -0.55
C4 L 0.42 0.13 0.44 -0.81 -0.55

A
b
st
ra
ct

C3 R 0.15 -0.54 -0.38 -0.11 0.02

C4 R -0.02 0.10 -0.17 -0.18 0.18
LI 0.37 -0.46 -0.16 0.19 -0.01

C3 L 0.54 -0.13 0.33 -0.76 -0.57
C4 L 0.52 -0.55 0.12 -0.52 -0.57

N
eu
R
o
w

C3 R 0.73 -0.47 0.33 -0.69 -0.74

C4 R 0.64 -0.47 0.09 -0.47 -0.43
LI -0.24 0.64 0.03 -0.06 0.35

IV. DISCUSSION

Current findings from this pilot study help gather additional

information concerning the impact of embodied VR in MI-

BCI training, not only in terms of BCI performance, but also

through the evoked ERD. Specifically, we illustrate the ability

of older adults to modulate their sensorimotor rhythms during

MI-BCI training in both Abstract and NeuRow conditions.

Concretely, we can observe increased ERD in amplitude as

well as duration to be sustained during NeuRow in relation

to Abstract feedback. This is suggesting that by rendering the

movement of a virtual avatar across the MI trial, we can help

the user to produce stronger ERD through MI and action obser-

vation, that could lead also to a faster learning for better BCI

control. This is of high importance in restorative-BCI’s since

prior research has shown that sensorimotor desynchronization

in response to action observation can activate also areas of

the Mirror Neuron System (MNS) [37], [38]. This has led to

the notion of an “extended MNS” including, among others,

the sensorimotor areas [39], thus, providing an alternative or

additional source of motor training that may be useful to

promote recovery after stroke. [40].

In terms of the lateralization of Beta activity, we observe

an increased effect from the embodied feedback condition

with increased LI. Specifically, prior research has shown that

Beta lateralization is less strong for imagination compared to

motor execution [41], while there is lateralized modulation of

Beta power in sensorimotor areas during action observation

[42]. This is an interesting finding, showing the importance

of observation during MI, and that embodied feedback could

provide a more ecologically valid training, given that it can

provide similar sensorimotor activation as in motor execution.

Overall, our results illustrate the potential of embodied

VR feedback in MI-BCI training as a way to evoke similar

brain activation patterns as in actual movement [17], involving

potentially overlapping sensorimotor areas. This is of high

importance in the rehabilitation domain, given that the primary

goal is the activation of sensorimotor areas, including the

MNS, for inducing neuroplastic changes.

V. CONCLUSIONS

Overall, in this pilot we found that MI training through

NeuRow can provide lower ERD compared to Abstract feed-

back, and more lateralized in terms of Beta power. Ultimately,

NeuRow provided more discriminative features, yielding better

classification outcome in terms of the LDA score. Finally, no

significant correlations were found, although they need to be

interpreted with caution since the current test can lead to false

positive errors. In the future, we are planning to increase the

sample size and perform a multiple regression analysis for

avoiding Type I errors.

Current results, although with limited sample size, con-

tribute to gather further evidence concerning the impact of

embodied feedback in the desynchronization of sensorimotor

rhythms during MI-BCI in VR. Specifically, given the age-

related differences of electrophysiological responses, this pa-

per extends prior research by including elderly adults, and

provides more ecologically-valid data, closer to the demo-

graphics of stroke survivors. This is quite relevant for the

future development of restorative BCI systems, given the

impact that embodied VR could have in re-training the lost

functions in chronic stroke patients.
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