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Abstract
Socially assistive robots are increasingly being explored to improve the engagement of
older adults and peoplewith disability in health andwell-being-related exercises.How-
ever, even if people have various physical conditions, most prior work on social robot
exercise coaching systems has utilized generic, predefined feedback. The deployment
of these systems still remains a challenge. In this paper, we present our work of itera-
tively engaging therapists and post-stroke survivors to design, develop, and evaluate a
social robot exercise coaching system for personalized rehabilitation. Through inter-
views with therapists, we designed how this system interacts with the user and then
developed an interactive social robot exercise coaching system. This system integrates
a neural network model with a rule-based model to automatically monitor and assess
patients’ rehabilitation exercises and can be tunedwith individual patient’s data to gen-
erate real-time, personalized corrective feedback for improvement. With the dataset
of rehabilitation exercises from 15 post-stroke survivors, we demonstrated our sys-
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tem significantly improves its performance to assess patients’ exercises while tuning
with held-out patient’s data. In addition, our real-world evaluation study showed that
our system can adapt to new participants and achieved 0.81 average performance to
assess their exercises, which is comparable to the experts’ agreement level. We further
discuss the potential benefits and limitations of our system in practice.

Keywords Human–robot interaction · Socially assistive robots · Personalization ·
Post-stroke rehabilitation therapy

1 Introduction

As theworld’s older population continues to grow at an unprecedented rate, the current
supply of care providers is insufficient to meet the current and ongoing demand for
care services (Dall et al. 2013). Researchers have explored an opportunity of socially
assistive robots (Feil-Seifer et al. 2005; Tapus and Mataric 2006) that aim to enable
people with cognitive, sensory, and motor impairments or assist the clinical workforce
(Riek 2017). One potential application is socially assistive robots for rehabilitation
therapy (Matarić et al. 2007; Lee et al. 2020, 2022). During rehabilitation, patients
require completing a significant amount of self-directed exercises (O’Sullivan et al.
2019; Lee et al. 2022). However, low treatment adherence is a problem across sev-
eral healthcare disciplines of physiotherapy (Kåringen et al. 2011). To address these
problems, there has been increasing attention on social robot coaching systems (Riek
2017; Matarić et al. 2007; Lee et al. 2020, 2022). These systems autonomously moni-
tor patients’ exercises and provide encouragement to support patients’ engagement in
well-being-related or rehabilitation exercises through social interaction (Tapus et al.
2007; Feil-Seifer et al. 2005).

Prior work on robotic exercise coaching systems has demonstrated that older adults
or post-stroke subjects can successfully exercise and stay engagedwith a robot over ses-
sions (Fasola andMatarić 2013; Görer 2013). However, despite the potential of a robot
to monitor and guide exercises, prior work is limited to providing generic, predefined
corrective feedback on patient’s exercise performance (e.g., checking angular differ-
ence with the prespecified motion (Görer 2013; Fasola and Matarić 2013; Guneysu
and Arnrich 2017)). It is still challenging to empower a social robot exercise coach-
ing system to generate tailored corrective feedback on an individual patient’s motion
(Görer 2013) and adopt these systems broadly yet.

In this work, we design, develop, and evaluate a socially assistive robot coach-
ing system that automatically monitors and coaches physical rehabilitation therapy.
Specifically, we selected a test domain as stroke, which is the second leading cause
of death and disability (Feigin et al. 2017). We then conducted interviews with ther-
apists to design and develop a socially assistive robot coaching system. This system
integrates a machine learning (ML) model with a rule-based (RB) model and can be
tuned with held-out user data to assess the performance of exercises for personalized
post-stroke therapy (Fig. 1a) (Lee et al. 2020). Building upon the previous work (Lee
et al. 2020), we demonstrated the benefit of our approach to adapt a new user and
provide personalized assessment compared to the commonly used transfer learning
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Fig. 1 a Flow diagram of an interactive approach of a socially assistive robot for personalized physical
therapy. b a setup of the system with a visualization interface and a socially assistive robot that provides
corrective feedback (e.g., audio, visual, gestures of the robot)

technique on a feed-forward neural network model (Zhuang et al. 2020) (i.e., pretrains
a model using the dataset from post-stroke survivors and then fine-tune it based on the
data from a new post-stroke survivor).

During the real-world study with ten participants, our interactive system can be
adapted to new participants and achieved 0.81 average performance to assess partic-
ipants’ quality of motion, which is comparable to experts’ agreement level (i.e., 0.80
average performance). Overall, participants expressed positive opinions on our system
to monitor and provide feedback on their exercises, but also described practical issues
to be improved.

2 Related work

In this section, we describe the background of socially assistive robotics for coaching
exercises and outline related work on designs and techniques of socially assistive
robotics for rehabilitation therapy.

2.1 A socially assistive robot as a coach

The research of socially assistive robotics has shown great potential to supplement
healthcare services through social interaction (Feil-Seifer et al. 2005; Tapus et al. 2009;
Matarić and Scassellati 2016). For instance, researchers have explored the feasibility
of a socially assistive robot exercise coaching system in a rehabilitation process, in
which the system automatically monitors rehabilitation exercises and provides users
feedback without the presence of a therapist (Matarić et al. 2007). Fasola and Mataric
demonstrated that older adults considered a physically embodied robot more engaging
and acceptable as an exercise partner than a virtually embodied agent (Fasola and
Matarić 2013). Furthermore, researchers have shown that diverse populations (i.e.,
post-stroke patients (Fasola and Matarić 2013), elderly people (Görer et al. 2017),
children (Guneysu and Arnrich 2017)) can engage in exercise sessions with a social
robot exercise coaching system on several domains (e.g., stroke, dementia, etc.) (Tapus
et al. 2009; Lee et al. 2022; Riek 2017).
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2.2 Designs of a socially assistive robot coaching system

For creating user-centered, socially assistive robots, researchers have engaged with
various stakeholders to derive design requirements (Beer et al. 2012; Azenkot et al.
2016;Winkle et al. 2018; Lee et al. 2022).Winkle et al. (2018) described design guide-
lines of social robots for rehabilitation, from focus group sessions and interviews with
therapists. In addition, Polak and Levy-Tzedek also conducted focus group sessions
with therapists and a preliminary evaluation study on a gamification system for reha-
bilitation with four post-stroke survivors (Feingold Polak 2020). Lee et al. (2022)
conducted studies with therapists and post-stroke survivors to elicit detailed design
specifications on how AI and robotic coaches could interact with and guide patients’
exercises in an effective and acceptable way. One of the important design considera-
tions that are repetitively mentioned in prior work is the importance of personalized
feedback (Winkle et al. 2018; Feingold Polak 2020; Lee et al. 2022).

In this work, we interviewed therapists to understand what kinds of feedback they
generate and explored a computational technique that enables a social robot exercise
coaching system to generate personalized feedback and control robot behaviors as a
therapist.

2.3 Techniques of monitoring and assessing patient’s exercises

The capability of automatically assessing a patient’s motion and providing a person-
alized interaction with tailored corrective feedback on patient’s exercise performance
is critical for the deployment of a social robot exercise coaching system (Matarić
et al. 2009; Görer et al. 2017; Lee et al. 2022). For personalized interactions with a
socially assistive robot, Irfan et al. explored recognizing a user and referred the user’s
name periodically as personalized feedback (Irfan et al. 2020). Schneider and Kum-
mert investigated a technique to match the user’s preferred order of different exercises
for personalized interactions of exercise robots (Schneider and Kummert 2021). How-
ever, limited prior work on social robot exercise coaching systems has explored how an
automated assessment approach can be developed to generate personalized corrective
feedback.

When it comes to an automated assessment approach, researchers have implemented
a method that monitors the completion of an exercise by computing the difference of
a joint angle between the user’s motion and the predefined target motion (Fasola and
Matarić 2013; Görer et al. 2017). Guneysu and Arnrich (2017) applied dynamic time
warping to compute the statistics of a joint angle and distance measures with a prede-
fined motion. Tanguy et al. (2016) utilized a Gaussian mixture model to generate an
ideal motion and arbitrarily set a threshold value to identify the differences of joints
between idea and observed motions. Although both (Guneysu and Arnrich 2017) and
(Tanguy et al. 2016) support analyzing multiple variables for evaluating an exercise,
they still rely on a predefined motion or a generic threshold. Prior work with generic
threshold-based methods might not be applicable for patients with various character-
istics (Lee et al. 2020).
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In addition, researchers have also explored a machine learning model to monitor
patients’ quality of motion. For instance, Kashi et al. (2020) evaluated the feasibility
of a random-forest model to identify compensatory movements. However, it remains
unclear how such a machine learning model can adapt to a new patient and perform
well to assess patients’ quality of motion.

For personalized quantitative rehabilitation assessment, Lee et al. (2020) explored
an approach of dynamic feature selections and a hybridmodel that integrates amachine
learning model with a rule-based model (Lee et al. 2020). However, prior work
is limited to providing assessment after completing a motion and does not support
frame-level assessment to provide any information on when an erroneous motion has
occurred.

Building upon prior work that explores a hybrid model for personalized assessment
(Lee et al. 2020, ?), we further investigated the system implementation of a socially
assistive robot to automatically monitor and guide patients’ exercises. Specifically, we
analyzed the benefit of our interactive hybrid approach compared to the commonly
used transfer learning technique on a feedforward neural networkmodel (Zhuang et al.
2020; Weiss et al. 2016) (i.e., pretrains the model using the dataset from other post-
stroke survivors and then fine-tune it based on data from a new post-stroke survivor).
In addition, we conducted a real-world experiment to evaluate the feasibility to adapt
to a new participant and provide personalized, real-time corrective feedback.

3 Study for stroke rehabilitation

This work focuses on the domain of stroke, which is the second leading cause of
death and third most common contributor to disability (Feigin et al. 2017). First, we
iteratively discussed with three therapists (TPs with check marks in the specification
column of Table 1; mean (M) = 6.33, standard deviation (SD) = 2.05 years of expe-
rience in stroke rehabilitation) to specify the study designs on stroke rehabilitation:
exercises and performance components for assessment (Lee et al. 2019). We then had
additional interviews with therapists to learn their practices on how they guide reha-
bilitation assessment. Based on these interviews, we created an interactive social robot
coaching system that automatically monitors and coaches rehabilitation exercises. We
then conducted a real-world experiment with ten healthy participants to evaluate the
potential benefits and limitations of our system. This section presents only the spec-
ifications of our study and interviews with therapists to understand their practices.
The evaluation part will be discussed later in Sect. 6.2 after presenting our system
implementation.

3.1 Three task-oriented upper-limb exercises

This work utilizes three upper-limb stroke rehabilitation exercises recommended by
therapists (Lee et al. 2020). For Exercise 1, a user has to raise the user’s wrist to the
mouth as if drinking water (Fig. 2a). For Exercise 2, a user has to raise the user’s wrist
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Table 1 Profiles of therapists, who contributed to specify the study and share their practices to design our
system

ID Specification Interview # of Years in stroke rehabilitation

TP 1 � � 6

TP 2 � � 4

TP 3 � 9

TP 4 � 23

forward as if touching a light switch on the wall (Fig. 2c). For Exercise 3, a user has to
extend the user’s elbow in the seated position to practice the usage of a cane (Fig. 2e).

3.2 Unaffected and affected sides

When a stroke occurs, post-stroke survivors suffer from the paralyzed, limited func-
tional abilities of limbs. In this work, we refer to the unparalyzed side of a post-stroke
survivor as the “Unaffected” side and the paralyzed side of a post-stroke survivor with
limited functional ability as the “Affected” side.

3.3 Performance components

We discussed commonly used stroke assessment tools (i.e., the Wolf Motor Function
Test (Wolf et al. 2001) and the Fugl–Meyer Assessment (Sanford et al. 1993)) with
therapists and specified three common performance components of stroke rehabili-
tation exercises: ‘Range of Motion (ROM)’, ‘Smoothness’, and ‘Compensation’ (Lee
et al. 2020). The ‘ROM’ indicates how closely a patient performs the target posi-
tion of a task-oriented exercise. The ‘Smoothness’ describes the degree of trembling
and irregular movement of joints while performing an exercise. The ‘Compensation’
indicates whether a patient performs any unnecessary, compensatory movements to
achieve a target movement. For instance, patients might lean their head or trunk to the
side and elevate their shoulder to perform an exercise using their affected side with
the limited functional ability (Fig. 2).

The descriptions and labels of performance components are described in Table 2.
The labels of ‘ROM’ and ‘Smoothness’ are annotated at the end of a motion and
represented as a binary label on each performance component: a correct/normal per-
formance component (Y = 1) and an incorrect/abnormal performance component
(Y = 0). The labels of ‘Compensation’ are annotated at every frame of the patient’s
motion to indicate whether three major compensations (i.e., abnormal alignment of
head, spine, and shoulder) occur or not.

3.4 Understanding therapists’practices

We conducted a one-on-one interview with each of the three therapists (TPs
with check marks in the interview column of Table 1; mean (M) = 11.00,
standard deviation (SD) = 8.52 years of experience in stroke rehabilitation). Dur-
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Fig. 2 Sample unaffected and affected motions of exercises: a a patient raises the patient’s unaffected side
of the wrist to the mouth, b a patient compensated with trunk and shoulder joints when attempting to move
the patient’s affected side of the wrist, c a patient raises patient’s unaffected side of the wrist forward, d
a patient elevated shoulder to compensate the limited functional ability of the patient’s affected side, e a
patient extends the patient’s affected side of the elbow, and f a patient leaned trunk forward to extend the
patient’s elbow

Table 2 Performance components and labels of physical stroke rehabilitation exercises

Performance components Labels Guidelines

Range of motion (ROM) 0 Movement that does not achieve a ‘Target’ position

1 Movement achieves a ‘Target’ position

Smoothness 0 Movement with tremor or unsmooth coordination

1 Smoothly coordinated movement

Compensation 0/1 Head in abnormal/normal alignment

0/1 Spine in abnormal/normal alignment

0/1 Shoulder in abnormal/normal alignment

ing the 1-h interview, the researcher asked therapists to speak aloud their strategies
for coaching a rehabilitation session and providing feedback on patient’s exercises
(i.e., “what kinds of feedback do you generate for a post-stroke survivor?”). To assist
therapists’ speaking aloud process, the researcher showed them the videos of post-
stroke survivors, who have different functional abilities (i.e., high, moderate, and low
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capability to achieve an exercise) and perform rehabilitation exercises. The detailed
process of collecting these videos is described in Sect. 5.1.

We analyzed the transcripts of interviewswith therapists through an iterative coding
process (Gale et al. 2013). Specifically, we first open-coded interview transcripts,
discussed emerging themes and ideas, and iteratively improved our codebook. We
found that therapists oversee the treatments of a post-stroke survivor by providing
a personalized rehabilitation session. Specifically, they monitor how their patients
performan exercise and provide their patients feedback to support the correct execution
of an exercise and encourage participation in rehabilitation (Lee et al. 2022). For
guiding a rehabilitation session, we noticed that all three therapists have a simple and
common procedure (Lee et al. 2022). Specifically, when they start a session, they
engage with their patients through brief greetings and describe the goal of a session
(e.g., what kinds of exercises a patient will perform and how many repetitions are
recommended) (Lee et al. 2022). If a patient is not familiar with an exercise motion,
therapists might show themselves to instruct a motion that a patient has to practice
(Lee et al. 2022). When a patient performs an exercise, therapists monitor the patient’s
exercises to identify any part for improvement and provide corrective feedback (Lee
et al. 2022). For instance,we found that therapists are particularly attentive to providing
feedback on compensatory motions (Cirstea and Levin 2000) that might cause more
severe pains. As rehabilitation requires patient engagement over an extended period,
therapists also strive to provide positive encouragement to their patients (Lee et al.
2022).

4 Interactive approach of an socially assistive robot for personalized
assessment and feedback

This work presents an interactive approach of a social robot exercise coaching system
(Fig. 1a), which combines machine learning (ML) and rule-based (RB) models to
assess the performance of patient’s exercises and tunes with patient’s data to generate
personalized feedback (Lee et al. 2020). AnMLmodel of our approach aims to extract
meaningful patterns from a large amount of data and to support a generic assessment
of the patient’s quality of motion (Lee et al. 2020). As such, a genericMLmodel might
not perform well on an unobserved new patient’s motion with unique characteristics;
our approach also integrates an ML model with a personalized RB model that can
tune with the patient’s unaffected motions to derive patient-specific threshold values.
This RB model can be easily updated to complement a generic ML model through
a weighted average, ensemble technique (Lee et al. 2020) into a hybrid model (HM)
and utilized to generate personalized corrective feedback on patient’s exercises. To
provide feedback when an erroneous motion has occurred, we explored an ensemble
voting method that leverages predictions on multiple consecutive frames for a more
accurate frame-level assessment (Lee et al. 2020). In the following subsections, we
describe the components of our approach: feature extraction, MLmodels, RB models,
hybrid models, an ensemble voting method, and an interface of a socially assistive
robot for personalized rehabilitation therapy.
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4.1 Feature extraction

This work represented an exercise motion with sequential joint coordinates from a
Kinect v2 sensor (Microsoft, Redmond, USA) and extracted various kinematic fea-
tures (Lee et al. 2019). For the ‘ROM’ performance component, we computed joint
angles (e.g., elbow flexion, shoulder flexion, elbow extension), the distance to a target
position, and normalized relative joint trajectories (i.e., the Euclidean distance between
two joints—head and wrist, head and elbow) (Lee et al. 2019). For the ‘Smoothness’
performance component, we computed the following speed-related features: speed
and the zero-crossing ratio of acceleration (Lee et al. 2019). As our work focuses on
upper-limb exercises, we computed these speed-related features on wrist and elbow
joints. For the ‘Compensation’ performance component, we computed normalized
joint trajectories: distances between joint positions of the head, spine, and shoulder in
x , y, z axis from the initial to the current frame (Lee et al. 2019).

Amoving average filter with a window size of five frames was applied to reduce the
noise of the estimated joint positions from a Kinect sensor similar to Lee et al. (2019).
Given an exercise motion, we computed a feature matrix F = { f1, . . . , fT } ∈ RT ×d

with T number of frames and d features and the statistics (e.g., maximum, minimum,
range, average, and standard deviation) of a feature matrix over all frames of the
exercise to summarize a motion into a feature vector, X ∈ R5d . This summarized
feature vector was utilized for the assessment of ‘ROM’ and ‘Smoothness’ perfor-
mance components. In addition, unlike (Lee et al. 2019) that only supports offline
assessment on the ‘Compensation’ performance component, we extracted a feature
vector at each frame for real-time, frame-level assessment on the ‘Compensation’ per-
formance component. Overall, we extracted 30 features for the ‘ROM’ performance
component, 60 features for the ‘Smoothness’ performance component, and 9 features
for the ‘Compensation’ performance component.

4.2 Machine learning (ML) model

For a machine learning (ML) model, we applied a supervised learning algorithm
through leave-one-patient-out cross-validation that utilizes training data from all
patients except a patient for testing. The ML model computes the score of being cor-
rect on a performance component (PML) and predicts the quality of motion. Among
various supervised learning algorithms, a decision tree, linear regression, a support
vector machine, a feedforward neural network, and a long short-termmemory (LSTM)
network, we utilized a feedforward neural network (NN) model due to its outperfor-
mance as shown in Lee et al. (2020). For the implementation of a feedforward neural
network (NN) model, we explored various architectures (i.e., one to three layers with
32, 64, 128, 256, and 512 hidden units) and an adaptive learning rate with different
initial learning rates (i.e., 0.0001, 0.005, 0.001, 0.01, 0.1). We applied ‘ReLu’ activa-
tion functions and ‘AdamOptimizer’ and trained a model with cross-entropy loss and
a mini-batch size of 1 and an epoch of 1.
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4.3 Rule-based (RB) model

A rule-based (RB) model leverages the set of feature-based, if-then rules from ther-
apists to estimate the quality of a motion (Lee et al. 2020). In addition, our system
computes statistics of kinematic features from user data and generates patient-specific
rules for personalized assessment. For the initial development of the RB model,
semi-structured interviews were conducted with two therapists (mean (M) = 5.05,
standard deviation (SD) = 1.05 years of experience in stroke rehabilitation) to elicit
their knowledge of assessing stroke rehabilitation exercises. The knowledge of ther-
apists has been formalized as 15 independent if-then rules (Appendix Table 5). For
example, the assessment on the ROM component for Exercise 1 is specified as follows
(Lee et al. 2020):

Ŷ =
{
1 if pmax(wr, cy) ≥ pmax(spsh, cy)

0 else
(1)

where p( j, c) indicates the joint position (p) with a joint j (e.g., wrist (wr) and
spine shoulder, the top of spine, (spsh)) and the coordinate of a joint (c) in the set
C ∈ {cx , cy, cz}. Ŷ denotes the predicted label on a performance component.

This rule simply checks themaximumposition of awrist joint, pmax(wr, cy), related
to that of a spine shoulder joint, pmax(spsh, cy), in the y-coordinate to roughly estimate
whether a patient achieves the target position of Exercise 1. For the prediction with
multiple rules, we apply a majority voting algorithm and do not apply any tie-breaking
method given an odd number of rules.

The score of being correct on each performance component using the RB model
(PRB) is computed with the following equation:

PRB = 1

|R|
∑
r∈R

min

(
xr

τr
, 1

)
(2)

where xr indicates the feature value of a rule r from a trial (e.g., pmax(wr , cy) for
the example above), τr describes the threshold value of a rule r (e.g., pmax(spsh, cy)

for the example above). R describes the set of rules elicited from the therapists. min
function is applied so that this equation assigns a value of 1 if the feature value of a
rule exceeds the threshold of that rule. Otherwise, the equation normalizes the feature
value of a rule with the threshold of a rule to compute the score of being correct.

In addition, as the initial threshold values of rules are generic, our approach can
further tune a rule-based (RB)model with held-out user’s unaffectedmotions to update
its threshold values on each patient (Fig. 1a). For the computation of personalized
threshold values, we utilize the held-out user’s unaffected motions to learn a Gaussian
probability density function f (xr ) ∼ N (μr , σ

2
r ). Specifically, when a patient first

interacts with the system and there is no prestored patient’s unaffected data, the system
will inform the patient to perform an exercise with the patient’s unaffected side. When
the system has the patient’s unaffected data, it will process to extract the feature value
of a rule (xr ). We then utilized the maximum likelihood estimate (MLE) (Gopinath

123



Design, development, and evaluation of an interactive…

1998) to estimate the parameters of a Gaussian probability density function,μr and σr

as the mean and standard deviation of xr , respectively. We then update the threshold
value for a rule r with either 2σs or 3σs (i.e., τr ∈ [μr + 2σr , μr + 3σr ]).

4.4 Hybridmodel

A hybrid model (HM) applies a weighted average, ensemble technique (Baltrušaitis
et al. 2019) to combine machine learning (ML) and rule-based models to assess
patients’ quality of motion (Lee et al. 2020). For the prediction on the quality of
motion, the HM computes the weighted average of prediction scores from two mod-
els, in which the contribution weight of eachmodel is the performance of a model (i.e.,
the F1-score of each model in the range of [0, 1]). Given training data, this weight can
be precomputed and updated as the system collects additional data. The equation of
computing the score of being correct using the HM, PHM, is as follows:

PHM = ρML

ρML + ρRB
PML + ρRB

ρML + ρRB
PRB (3)

where PML and PRB indicate the scores of the machine learning (ML) and rule-based
(RB)models, and ρML and ρRB describe theweights, F1-scores ofML andRBmodels.

4.5 Ensemble votingmethod for frame-level assessment

Our approach can detect a compensation motion at the frame level in real time so that
a social robot exercise coaching system can provide a patient with corrective feedback
when an erroneous motion has occurred. However, such a frame-level assessment,
identifying the exact boundaries of a compensation motion, is challenging (Hasan
and Roy-Chowdhury 2014). Thus, our approach applies an ensemble voting method
(Dietterich 2000) that utilizes predictions on multiple consecutive V f frames for a
more robust frame-level assessment. The process of this method consists of (1) initial,
continuous frame-level predictions and (2) the computation of a score to determine a
winning prediction.

Let us denote h( ft ) the predicted frame-level assessment at frame t with an assess-
ment model h (e.g., a machine learning model, a rule-based model, or a hybrid model)
and a feature vector ft . The first process of an initial frame-level prediction runs
continuously with an assessment model to generate predicted frame-level assessment
h( ft ) at each frame t .When V f number of initial frame-level predictions are available,
our method computes a score of detecting a compensation motion at frame t over all
label classes Y ∈ Y . Then, the winning prediction at frame t is selected as follows:

Ŷt = argmax
Y∈Y

∑
ft ∈F̄

δ(h( ft ), Y ) (4)

where F̄ indicates a set of accumulated V f feature vectors until t frame and δ(h( ft ), Y )

assigns 1 if h( ft ) = Y and 0 otherwise. The δ function is to count the predicted
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assessment of Y with the predictions from V f frames. Ŷt indicates the predicted frame-
level assessment at t frame on a compensation motion with the largest number of the
predictions, votes from V f frames. In case of having tied votes, our method assigns
Ŷt with the latest prediction h( ft ). By leveraging votes from past V f − 1 frames to
the current t frame, our approach can support a more robust frame-level assessment.

4.6 Interface of a socially assistive robot

Based on our findings from the interviews with therapists (Sect. 3.4), we designed
and developed a state machine to enable interactions of our social robot exercise
coach system with users as a therapist. This state machine (Fig. 3) includes ten states:
‘Greeting/Briefing’, ‘Demonstration’, ‘Initial’, ‘Movement’, ‘Terminate’, ‘Feedback’,
‘Notify’, ‘Encourage’, ‘Correction’, and ‘Wrap-up’. Depending on the user inputs
(e.g., clicking a button to start a system) and the results from our motion analysis
component, the state machine will transit to a corresponding state and generate audio
and visual feedback and control the behaviors of our social robot exercise coaching
system (e.g., gestures).

In the ‘Greeting/Briefing’ state, our robotic exercise coaching system will summa-
rize the main goal of a rehabilitation session as specified by a therapist. The system
will show the video of a prescribed motion in the ‘Demonstration’ state if a new exer-
cise is prescribed and a user requests it. In the ‘Initial’ state, the system will prompt
whether a user is ready to start an exercise. Once a user confirms to start performing an
exercise, the system will transit to the ‘Movement’ state and alert that the system starts
monitoring in the ‘Notify’ state. When a user performs an exercise, the system will
provide various types of feedback in the ‘Feedback’ state. For instance, if the system
detects any compensated motion in real time, the system will provide a user corrective
feedback on which unnecessary joints are involved in the ‘Correction’ state. Once a
user completes an exercise, the state machine of our system transits to the ‘Terminate’
state, in which it will summarize the predicted assessment on the quality of motion
in the ‘Notify’ state and provides ‘Encouragement’. When a user completes all pre-
scribed exercises or requests to finish a session, the system will summarize what a
user achieves in the session and remind the next session in the ‘Wrap-Up’ state.

For a social assistive robot, we used an NAO robot (SoftBank Robotics Europe,
France) that supports competitive hardware capabilities and a user-friendly software
development environment with cost reduction (Gouaillier et al. 2008). We utilized the
NAO SDK and Choregraphe software (Pot et al. 2009) to program the gestures of the
NAOandGoogle Text To Speech (TTS)APIs (Këpuska andBohouta 2017) to generate
audio outputs from a socially assistive robot exercise coaching system. For communi-
cating the results of motion analysis, we implemented client/server applications with
socket programming in Python.
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Fig. 3 The state machine of an interactive, social robot exercise coaching system: The system will provide
various types of social interactions, such as audio and visual feedback to a user and control the gestures of
the social robot based on each state (e.g., greeting, demonstration, feedback on exercise, and wrapping up
a session)

5 Experiments

5.1 Dataset of three upper-limb exercises

To evaluate the feasibility of our approach, this work utilizes the dataset of three exer-
cises from 15 post-stroke subjects using a Kinect v2 sensor (Microsoft, Redmond,
USA) (Lee et al. 2019). Fifteen post-stroke patients (2 females) with diverse func-
tional abilities from mild to severe impairment (37± 21 out of 66 Fugl Meyer Scores
(Sanford et al. 1993)) performed 10 repetitions of each exercise with both affected and
unaffected sides. During the data collection, a sensor was located at a height of 0.72m
above the floor and 2.5m away from a subject and recorded the trajectory of joints and
video frames at 30 Hz. The starting and ending frames of exercise movements were
manually annotated.

Two therapists (mean (M) = 5.0, standard deviation (SD) = 1.0 years of expe-
rience in stroke rehabilitation) annotated the dataset to implement our approach and
compute the experts’ agreement level. They individually watched the recorded videos
of patients’ exercise movements and annotated the performance components of the
exercise motion dataset. For the frame-level annotation of the ‘Compensation’ per-
formance component, two expert annotators reviewed the images that were extracted
from the recorded videos with the corresponding sampling frequency using the FFm-
peg tool (Developers 2016). The annotations of experts were compared to measure
the experts’ agreement on F1-scores (i.e., ‘Experts’ Agreement’ in Appendix Table 4,
with the Cohen’s kappa of 0.65). We utilized the annotation of an expert, who evalu-
ated the functional abilities of patients with the Fugl–Meyer assessment and had more
experience as the ground truth.

The collected dataset was divided into ‘Training’ and ‘User’ data as follows:
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– ‘Training Data’ (Fig. 1a) is composed of 140 unaffected motions and 140 affected
motions from 14 post-stroke subjects to train a machine learning (ML) model.

– ‘User Data’ (Fig. 1a) includes 10 unaffected motions and 10 affected motions of
a testing post-stroke subject.

5.2 Quantitative in-laboratory system evaluation

We applied Leave-One-Subject-Out (LOSO) cross-validation on post-stroke patients
to evaluate our approach. A machine learning model (ML) was trained with data from
all subjects except one testing post-stroke survivor. An initial rule-based (RB) model
was developed from the interviews with therapists. A hybrid model applies a weighted
average to integrate a trained, outperforming ML model with a rule-based model. All
models (e.g., rule-based, machine learning, hybrid) were tested with affected motions
of the left-out post-stroke patient. This process was repeated over all post-stroke sur-
vivors to evaluate the performance of a model. In addition, we analyzed the effect of
tuning a model with held-out unaffected motions of the left-out post-stroke survivor.
For a feedforward neural network model, we applied the common transfer learning
technique (Zhuang et al. 2020) that fine-tunes a pretrained model with the patient’s
unaffected motions to implement the tuned feedforward neural network (Tuned ML-
NN). We then compared the performance of the Tuned ML-NN with that of the
HM-Tuned to evaluate the value of our interactive HM for a personalized assess-
ment. We also explored different numbers of multiple consecutive V f frames on our
ensemble voting method for frame-level assessment (i.e., V f = 1, . . . , 30). For the
performance metric, this work utilized an F1-score that computes the harmonic mean
of precision and recall for a more realistic measure of a model.

5.3 Real-world system evaluation

After developing our system, we conducted a real-world experiment to evaluate the
potential of our system with healthy participants.

As we had difficulty with running a study with post-stroke patients due to COVID-
19, we aimed to conduct a pilot evaluation study to receive early feedback on our
system before conducting user studies with post-stroke survivors. For this real-world
evaluation, we recruited 10 healthy participants. In each session, the researcher gave
an introduction to the study and instructed a compensatory motion of a post-stroke
survivor by showing a video and an image of a post-stroke survivor.When a participant
became familiar with a compensatory motion, the researcher instructed the participant
to perform six repetitions of an exercise: one trial of a correct ‘ROM’ and no ‘Com-
pensation’, one trial of an incorrect ‘ROM’ and no ‘Compensation’, two trials of a
correct ‘ROM’ and acted-out ‘Compensation’, and two trials of an incorrect ‘ROM’
and acted-out ‘Compensation’. While performing an exercise, our system automati-
cally monitored the participants’ exercises and provided real-time feedback through
audio, visualization, and robot gestures (Fig. 1b). All sessions were video-recorded for
further analysis (e.g., collecting the ground truth). After completing the exercise trials,
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each participant filled out the following usability questionnaires (Fasola and Matarić
2013) of our system on a 7-point scale and provide any suggestions for improvement:

– Usefulness: “The system provides a useful, valuable, rich feedback”
– Intelligence: “The system is intelligent and competent”
– Trustfulness: “The system is trustful”
– Social Attraction: “The system is friendly and pleasant. I could have an enjoyable

and motivating interaction”
– Usage Intention: “I would use the system in future or recommend the system as an

exercise partner”

As it was difficult to instruct and act out post-stroke survivors’ acted-out non-
smooth motions, we excluded to act-out ‘Smoothness’ component during the study.
A researcher, who facilitated the evaluation experiment, only manually indicated a
starting cue to start performing an exercise trial. All other functionalities of our system
(Fig. 1b)were operated autonomously during the study. The protocols of this user study
were reviewed and approved by the institutional review board.

6 Results

6.1 In-laboratory system performance

Figure 4 summarizes the performances of models, which measure an agreement with
ground-truth labels by computing average F1-scores on performance components of
three exercises. For machine learning (ML) models, we explored a non-interactive,
feedforward neural network (ML-NN), building upon the results fromLee et al. (2020).
In addition, we presented the results of a tuned, feedforward neural network (Tuned
ML-NN). The parameters of ML-NN models (i.e., hidden layers/units and learning
rates of feedforward neural networks) that achieved the best F1-score during leave-
one-subject-out (LOSO) cross-validation are summarized in Appendix Table 3.

In addition, we present the performance of the initial, non-interactive rule-based
model (Non-interactive RB) from the interviews with therapists and that of the interact
fine-tuned rule-basedmodel (RB-tuned) after leveraging the held-out user’s unaffected
motions to tune threshold values for a personalized assessment. The parameters of rule-
based models (i.e., the range of the threshold values with 2σ or 3σ ) are selected to
achieve the best F1-score during validation: 3σ is utilized over three performance com-
ponents of three exercises except for the ‘ROM’ and ‘Smoothness’ of both Exercises
1 and 2.

For hybrid models (HMs), we describe the performance of the initial, non-
interactive hybrid model (Non-Interactive HM) that integrates the feedforward neural
network (ML-NN) with the non-interactive rule-based model (Non-Interactive RB)
and that of the interactive, tuned hybrid model (HM-tuned) that combines the ML-NN
with the interactive, tuned rule-based model (RB-Tuned).

For machine learning (ML) models, neural networks (ML-NN) achieve a good
agreement level with ground-truth annotations (i.e., 0.7899 average F1-score over all
exercises), which is equally good with experts’ agreement. However, the initial, non-
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interactive rule-based model (Non-Interactive RB) achieves the lowest performance:
0.5827 average F1-score over all exercises. According to the further analysis of the
non-interactive, rule-based model, we found that such low performance occurred,
because elicited rules from therapists are generic and not tuned for individuals with
different physical conditions (Lee et al. 2020). For instance, one rule of assessing
the ‘Compensation’ performance component is to check whether the x-coordinate
of a shoulder joint is located more than the 15% of the initial position. We found
that even if affected motions of some patients were annotated as normal and did not
involve compensated shoulder movements, the shoulder joint of those motions was
located around 20% of the initial positions, which was greater than a generic threshold
value and was misclassified as compensated motions. This indicates the importance
of generating personalized rules for patients with various physical characteristics and
functional abilities.

The initial, non-interactive hybrid model (Non-Interactive HM) achieved a 0.7447
average F1-score over all exercises. As the initial, non-interactive rule-based model
(Non-Interactive RB) had limited performance, the non-interactive HM that integrates
the ML model with neural networks (ML-NN) and the non-Interactive RB led to
slightly lower performance than that of the ML-NN (i.e., 0.7899 average F1-score
over all exercises). However, the non-interactive HM still achieved comparable per-
formance to the experts’ agreement.

To evaluate the feasibility of tuning a model for personalized assessment, we
updated the threshold values of a rule-based model with held-out patient’s unaffected
motions (as described in Sect. 4.3) and implemented the interactive, tuned rule-based
model (RB-Tuned) and interactive, tuned hybrid model (HM-Tune) that integrates the
ML-NN model with the interactive, RB-Tuned model. In addition, we implemented
the tuned neural network model (Tuned ML-NN) that fine-tunes a neural network
model (ML-NN) with the patient’s unaffected motions using the common transfer
learning technique (Zhuang et al. 2020). We then compared the performance of the
Tuned ML-NN with that of the interactive, HM-Tuned to evaluate the value of our
interactive HM for personalized assessments.

BothRB-Tuned andHM-Tunedmodels significantly improved their performance to
replicate the therapist’s assessment (p < 0.01 using the paired t-tests over three per-
formance components of three exercises). Specifically, the RB model significantly
improved its performance around 37% from 0.5821 to 0.7957 average F1-scores
over all exercises (p < 0.01). In addition, the hybrid model (HM) also significantly
improved its performance around 11% from 0.7447 to 0.8235 average F1-scores over
all exercises (p < 0.01) and outperformed other approaches. The performance of
the tuned hybrid model (HM-tuned) was better than those of the machine learning
model with neural networks (ML-NN), the Tuned ML-NN, and the RB-Tuned (i.e.,
4%, 10%, and 3% improvement, respectively, without statistical significance). Unlike
our RB-Tuned and HM-Tuned models that improved their performance, the Tuned
ML-NN performed worse 5% from 0.7899 to 0.7427 average F1-scores after tuning
with the patient’s unaffected motions.

To analyze the effect of our ensemble voting method for frame-level assessment,
we utilized the ML-NN, RB-Tuned, and HM-Tuned models and plotted their average
performance of detecting frame-level compensation on the head, spine, shoulder joints
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Fig. 4 Comparison of model performance without/with tuning with user data: Both the rule-based (RB)
model and the hybrid model (HM) significantly improved their performance to replicate the therapist’s
assessment while tuning with patient’s unaffected motions. The RB model significantly improved its per-
formance by 37% from 0.5821 to 0.7957 average F1-score (p < 0.01 using paired t-tests) and the HM
improved its performance by 11% from 0.7447 to 0.8235 average F1-score over three exercises (p < 0.01
using paired t-tests). In contrast to the RB and HM models, the Tuned ML-NN performed worse than the
ML-NN after tuning with the patient’s unaffected motions

over three exercises with various numbers of consecutive frames (V f = 1, . . . , 30).
In Fig. 5, all three models (i.e., ML-NN, RB-Tuned, HM-Tuned) improved their per-
formance while leveraging prediction from multiple frames and achieved their best
performance with V f = 29. When we compared the performance of a model without
and with an ensemble voting method (V f = 1 and V f = 29), the ML-NN model
improved its performance from 0.7723 (V f = 1) to 0.7803 (V f = 29) average F1-
score (p < 0.01 using the paired t-tests over three compensations of three exercises);
the RB-Tuned model improved its performance from 0.7655 (V f = 1) to 0.7816
(V f = 29) average F1-score (p < 0.01); the HM-Tuned model improved its perfor-
mance from 0.7975 (V f = 1) to 0.8070 (V f = 29) average F1-score (p < 0.01).

6.2 Real-world system performance

Figure 6 summarizes the performance of non-interactive and interactive hybridmodels
during the in-laboratory and real-world studies.Our results showed that non-interactive
models of the real-world study led to lower average performance compared to the
models of the in-laboratory study alongwith the performance degradation of 22% from
0.84 F1-score to 0.65 F1-score. Also, interactive models of the real-world study led to
lower average performance than the models of the in-laboratory study. However, our
interactive models led to a performance degradation of 5% from 0.86 F1-score to 0.81
F1-score, which is less than that of non-interactivemodels. Our system could still adapt
to newparticipantswith diverse physical characteristics and achieved performance that
is comparable with experts’ agreement.
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Fig. 5 Performance of frame-level assessment with different numbers of consecutive frames (V f ) using
the tuned rule-based model (RB-Tuned), machine learning model with neural networks (ML-NN), tuned
hybrid model (HM-Tuned)

Fig. 6 Comparison of performance of non-interactive and interactive hybrid models for quantitative reha-
bilitation assessment during in-laboratory and real-world studies: Although our interactive hybrid model
achieved slightly lower performance during a real-world study, our interactive model can still adapt to a
new participant and achieve comparable performance to experts’ agreement unlike non-interactive mod-
els. Compared to the non-interactive HM model, our interactive HM model had much lower performance
degradation from the in-laboratory study to the real-world study

In addition, Fig. 7 describes the histogram of usability responses from participants
in the real-world study. Overall, participants in the real-world study expressed positive
opinions on our interactive robotic exercise coach. They appreciated our system that
is “useful to observe my [their] body alignment and positions” (P5) during exercises

123



Design, development, and evaluation of an interactive…

Fig. 7 Usability survey responses fromparticipants during the real-world evaluation study:most participants
were positive to use our system which is considered as socially attractive and intelligent by providing useful
and trustful information

and provide feedback on “how well I [a participant] did it [an exercise]” (P6). Even if
our system provides incorrect assessment, participants considered that feature-specific
feedback from our system assisted them to better determine whether to trust the feed-
back of a system: “I find the system trustful because the feedback made me clear how
I should improve in a certain way” (P9). Participants also enjoyed having an exercise
with a robot, but one participant considered that it would be better if the robot can
have “a more friendly face or appearance”(P3). Overall, participants were positive
to use or recommend our system as an exercise coach even with some limitations.

7 Discussion

In this work, we study and discuss how a social robot exercise coaching system can
be designed and developed to generate personalized corrective feedback along with
the in-laboratory and real-world evaluation studies.

For generating personalized corrective feedback, we compared various existing
approaches with our proposed hybrid model and evaluated the effect of an ensemble
voting method for real-time, frame-level assessment (Lee et al. 2020). Among various
approaches, the machine learning model with neural networks (ML-NN), the tuned
rule-basedmodel (RB-tuned), and the initial, non-interactive and the interactive, tuned
hybrid models (Non-Interactive HM and Interactive, Tuned HM) have equally good
performance with expert’s agreement from the paired t-tests over three performance
components of three exercises. In addition, all models with an ensemble votingmethod
can leverage predictions frommultiple consecutive frames to improve their frame-level
assessment and inform a user when an erroneous motion has occurred.

As a rule-based (RB) model does not require the data collection process, an RB
model could be considered as a natural starting point to develop a social robot exercise
coaching system that can assess the quality ofmotion and generate corrective feedback
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on patient’s exercises (Matarić et al. 2007; Lee et al. 2020). However, an RB model
with generic threshold values (e.g., RB-Init and (Fasola and Matarić 2013; Görer
et al. 2017; Lee et al. 2020; Guneysu and Arnrich 2017; Tanguy et al. 2016)) does
not perform well to evaluate exercises of patients with various physical conditions.
Thus, it is important to have an interactive approach that can tune an RB model with
individual’s held-out unaffected motions to derive personalized threshold values for
assessment and corrective feedback.

When a social robot exercise coaching system is deployed and annotated data is
collected, a machine learning (ML) model (e.g., neural networks) can be trained to
extract new insights for assessing exercises from data. However, we do not recom-
mend simply replacing a rule-based (RB) model with an ML model using a complex
algorithm that operates as a black box model. For instance, given a patient’s affected
motion that is incorrectly performed with compensation, an ML model with neural
networks can just notify whether the compensation has occurred or not without any
explanations on the outputs of the model (Rudin and Radin 2019). In contrast, our
interactive hybrid model can predict assessment with improved performance, but also
identify which feature has been violated with a rule-based model: the violation on the
head in the z-axis and the shoulder in the y-axis for Fig. 2b. Such feature-level analysis
can be realized in the following personalized corrective feedback: “Keep your head
straight and do not raise your shoulder” (Lee et al. 2020, 2022). We found that par-
ticipants in our real-world study appreciated the potential of our system to make them
have trustful interactions with it. Thus, after data collection, a hybrid model is rec-
ommended to accommodate new generic insights from data and support a transparent
and personalized interaction between a robot and a user.

When it comes to the evaluation of the system performance, we found that our in-
laboratory study through leave-one-subject-out (LOSO) cross-validation has a slightly
over-promising performance than our real-world study. However, the performance
difference is not statistically significant using the t-test. Thus, we considered that the
LOSO cross-validation has the potential to provide the estimated system performance
in practice, which still needs to be carefully analyzed further (Rao et al. 2008).

During our real-world study,we found that our interactive robotic exercise coach has
the potential to adapt to a new user and automatically monitor participants’ exercises
and provide personalized corrective feedback. However, our system implementation
still requires manual input from a researcher to indicate the starting time of the user’s
motion. For creating a fully autonomous system, the exploration of techniques for
motion segmentation (Lin and Kulić 2013) is necessary. In addition, we have only
conducted the pilot evaluation with healthy participants, who acted out post-stroke
survivor’s motions. In-person user studies with post-stroke survivors are required to
better understand the feasibility of our system in practice. As post-stroke survivors
might perform incorrect motions that might exacerbate their conditions, it is also
important to explore a way to adapt a rehabilitation session and program (Lee et al.
2022) beyond personalized feedback that has been studied in this work.
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8 Conclusion

In this paper, we contributed to the designs, development, and evaluation of an inter-
active approach with an ensemble voting method for a social robot exercise coach
system in the context of physical stroke rehabilitation therapy. This system integrates
a machine learning model with an interactive and interpretable rule-based model and
tunes with patient’s data for real-time, personalized corrective feedback on patient’s
exercises. Through in-laboratory and real-world experiments, this work shows that
our interactive hybrid model can adapt to a new user and achieve better performance
to replicate an expert’s assessment and feedback on unobserved data of new users, but
also support transparent and personalized interaction of a robotic exercise coaching
system. In addition, this work discusses the potential benefits and limitations of our
system to support post-stroke survivor’s rehabilitation sessions.
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Appendix A

See Tables 3, 4 and 5.

Table 3 Parameters of machine learning models

Hidden layers and units/learning rate
ROM Smoothness Comp

E1 – NN: (256, 256, 256)/0.005 – NN: (16)/0.0001 – NN: (512, 512, 512)/0.005

E2 – NN: (32, 32, 32)/0.01 – NN: (32)/0.0001 – NN: (256, 256)/0.0001

E3 – NN: (16)/0.005 – NN: (128)/0.0001 – NN: (256, 256, 256)/0.1
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Table 4 Performances (avg.± std. of F1-scores) ofmachine learning (ML)models, rule-based (RB)models,
hybrid models (HMs), and experts’ agreement

Algorithm Exercise 1 Exercise 2 Exercise 3 Overall

ML-NN 0.8428 ± 0.0809 0.7549 ± 0.1026 0.7720 ± 0.0433 0.7899 ± 0.0466

Tuned ML-NN 0.7707 ± 0.1093 0.7105 ± 0.1308 0.7470 ± 0.0381 0.7427 ± 0.0303

RB-Init‡ 0.6148 ± 0.2086 0.6707 ± 0.1758 0.4626 ± 0.2102 0.5827 ± 0.0541

RB-Tuned 0.8317 ± 0.0784 0.8009 ± 0.1238 0.7543 ± 0.0248 0.7957 ± 0.0390

HM-Init‡ 0.8069 ± 0.0946 0.7060 ± 0.1318 0.7212 ± 0.0851 0.7447 ± 0.0679

HM-Tuned 0.8601 ± 0.1030 0.7769 ± 0.1317 0.8334 ± 0.1142 0.8235 ± 0.0425

Experts’ 0.7908 ± 0.2146 0.8222 ± 0.1534 0.7196 ± 0.1754 0.7775 ± 0.0526

Agreement

‡ indicates HM-Tuned performs statistically better than the compared method (pairwise t-tests at 99%
significance level)
The highest performance of the model is boldfaced

Table 5 List of independent rules to assess the quality of motion from therapists

Performance
components

Rules

Range of
motion
(ROM)

A wrist joint should be located above a spine-shoulder joint near a head joint for
exercise 1

A wrist joint should be located higher than a shoulder joint for exercise 2

A wrist joint should be located further than hip near a knee for exercise 3

Smoothness A wrist joint should be smoothly coordinated in the x-axis during 80% of the
motion

(Zero-crossing ratio of a wrist acceleration in the x-axis is within 20%)

A wrist joint should be smoothly coordinated in the y-axis during 80% of the
motion

(Zero-crossing ratio of a wrist acceleration in the y-axis is within 20%)

A wrist joint should be smoothly coordinated in the z-axis during 80% of the
motion

(Zero-crossing ratio of a wrist acceleration in the z-axis is within 20%)

Compensation A head joint should not be located more/less than 15% of an initial head position
in the x-axis

A head joint should not be located above/below 15% of an initial head position in
the y-axis

A head joint should not be located more/less than 15% of an initial head position
in the z-axis

A spine joint should not be located more/less than 15% of an initial spine position
in the x-axis

A spine joint should not be located above/below 15% of an initial spine position in
the y-axis
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Table 5 continued

Performance
components

Rules

A spine joint should not be located more/less than 15% of an initial spine position
in the z-axis

A shoulder joint should not be located more/less than 15% of an initial shoulder
position in the x-axis

A shoulder joint should not be located above/below 15% of an initial shoulder
position in the y-axis

A shoulder joint should not be located more/less than 15% of an initial shoulder
position in the z-axis
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