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Resumo

O uso de som em jogos tem-se vindo a tornar uma area de relevancia para
designers de jogos e jogadores. Com este novo interesse e novas tecnologias
disponiveis, é pertinente criar ferramentas que facilitem e permitam estender as
capacidades atuais de adicionar som a jogos.

A criacdo de experiéncias atraves de audio consiste na escolha do mesmo, de
maneira contextualizada e considerando o seu significado a nivel emocional.
Este trabalho tem como objetivo a criagdo de uma ferramenta que permita
adicionar audio a jogos considerando estes aspetos. Contudo, esta abordagem
requer poder avaliar audio a nivel emocional e o impacto deste, recorrendo a
técnicas de aprendizagem automatica (machine learning). A representacdo da
carga emocional pode ser realizada utilizando o amplamente aceite modelo
Circumplexo, que representa emocdes através das dimensdes Valence (quéo
positiva € a emocao) e Arousal (quéo ativa é a emocao).

Este trabalho fornece entdo quatro contribuicbes. A primeira consiste em
modelos computacionais que apresentam um aumento significativo de
performance na andlise da dimensdo de Valence, a custa de um ligeiro
decréscimo na dimensdo de Arousal. A segunda contribuicdo consiste huma
interface que permite ao game designer e jogador efetuar escolhas de audio
baseadas em emocodes alvo e informacdo contextual. A terceira reside na
escolha da interacao entre o jogo e seus componentes com o audio escolhido e
como este sera influenciado. Finalmente, a quarta contribuicdo consiste na
alteracdo de caracteristicas psicométricas do audio em tempo real para este se
adaptar aos objetivos delineados pelo utilizador.

Palavras-chave: Som; Jogos; Emocgbes; Modelo Circumplexo; Machine
Learning
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Abstract

Sound in games has increasingly become an area of interest for game designers
and players alike. With this renewed interest and new technologies available, it
is of relevance to create tools that facilitate and extend current capabilities of
adding sound in games.

The creation of experiences through audio lies in its choice, through a
contextualised way and considering its significance on an emotional level. The
objective of this work was to create a tool that enables the addition of audio
considering these aspects. However, such an approach requires the capacity of
evaluating of audio on an emotion level and its impact, making use of machine
learning techniques. The representation the emotional meaning carried by the
audio can be achieved by using the widely accepted Circumplex model,
presenting the results along the Valence (how positive the emotion is) and
Arousal (how active the emotion is) dimensions.

This work then provides four contributions. The first consists on computational
models that reveal a significant increase in terms of performance in the analysis
along the Valence dimension at the cost of a slight decrease along the Arousal
dimension. The second consists on a tool that allows the game designer and
player to choose audio based on target emotions and contextualised information.
The third contribution lies on the interaction of the chosen audio and the game
itself, its components and how it will respond to it. Finally, the fourth contribution
consists on the alteration of audio psychometrical characteristics in real-time,
allowing for a better adjustment of audio in face of the user’s objectives.

Keywords: Sound; Games; Emotions; Circumplex Model; Machine Learning;
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Chapter 1: Introduction

Motivation

It is widely accepted and acknowledged that sound and music have an impact in
human beings and can help to trigger diverse kinds of reactions. As such, the use
of sound and music in games has as its main objective to help maintain the game
flow and serve as an enhancer agent to the visual events presented and influence
the player towards a certain state of mind, according to the idealization of the
game designer.

Although sound and music in games is an area that is being constantly explored,
the impact that it has on the emotions perceived by the players is still quite difficult
to assess and control, making this the prime reason for the research conducted.
The possibility for the game designer to control the emotions of the player,
induced by sound and music, is very powerful and arguably adds to the game
experience. This could be achieved by making use of the Sonification, a field that
has as its primary objective the relay of information through sound, such as
emotions. However, one of the biggest challenges lies on what audio is chosen
for sending a specific message and there is no definitive answer from the
researchers.

While the selection of the correct sound or music plays an important part on the
listener’s perceived emotion, research also suggest that changing certain audio
features can also affect that perception.

Objectives

Considering what has been described above, this thesis has two main objectives.
The first consists on the development of techniques for predicting listeners’
perceived emotions resulting from an audio clip. The second lies on the ability to
change those clips utilizing music features described by research as meaningful
from an emotional point of view.

The result of the research is applied into a Unity3D project, with the objective of
allowing game developers to choose the right sound or music for the right
moment of the game, with the aim of enhancing the player’s experience. As the
prediction of the emotional content of audio is a challenge, the tool developed
should also extend to the players, enabling them to choose audio according to
their own idealization.

Thesis Outline

The present thesis is composed by a total six Chapters. The current Chapter,
Chapter 1 is the Introduction, presenting to the readers an introduction of why this
work was conducted and its objectives.



Chapter 2, Background, aims to present the readers with knowledge in the
researched area by providing a review of the most relevant literature.

Chapter 3, Feature Extraction and Modelling, provides a detailed description of
the methods and tools used to build the solution, as well as the reasons as to why
these were chosen.

Chapter 4, Implementation, describes the implementation process of the
proposed solution.

Chapter 5, Case Scenarios, shows the application of the tool in two games from
different genres.

Chapter 6, Conclusions, draws conclusions from all the work done and provides
some future work in this research field.



Chapter 2: Background

Sound, Music and Games

Sonification, an interdisciplinary field that involves Music, Human Computer
Interaction, Computer Science and Psychology, among others, has as its main
objective the representation of data through sound [1], [2]. Due to Sonification
being a field that is composed of several others, it also finds applications in a wide
range of situations, even in our daily lives, ranging from the notification sounds of
an incoming message, alarm clocks, car locks, to music and speech. Movies are
also part of the lengthy application list and is one that particularly benefits from it,
immersing the viewer with the rich environment created and brought to life with
realistic, quality sounds. For example, in [1] some projects using Sonification
were analyzed and the areas of the studies consisted in Data Exploration, Art and
Aesthetics, Accessibility, Motion Perception, Monitoring, Complement to
Visualization and Study of Psychoacoustics. For each project analyzed, the
mapping techniques (representation of a physical dimension, like distance,
through a musical feature, such as Pitch) used were distinguished and counted.
Some of the findings include the most common features used and the context of
their usage.

Sonification in Games

In games, sound can be used to transmit information to represent the status of
the player, such as the current health or motion, and the world state, such as the
current weather. All of this serves as a complement to the visual component of
the game. In contrast, the focus of this work lies in the application of sound and
music in games on an emotional level. This potential emotional content has the
possibility of supporting the storytelling element of games, building greater
engagement levels and enjoyment. Sharing the storytelling element with movies,
many authors note the similarities between the two mediums and state that music
can be composed using resembling approaches. However, the two diverge on
the audience roles, particularly in terms of action/reaction and duration. Games
may be designed to be played repeatedly with different interactions, whilst movies
are comprised of a fixed script staged once [3], [4]. Although a distinguishing
feature, it also poses the problem of audio replayability and subsequent listener
annoyance.

Game companies nowadays try to take advantage of sound and compositional
methods to bring the experience up a notch, now with access to big orchestras.
Regarding sound quality, a big step was taken, taking account the old 8-bit
content where the compositions had to be very carefully managed in terms of
memory and notes played (Tetris for example) [5]. Sonancia is an example of a
system, built in Unity3D, that ties the game sound to the architecture of a level



and was designed for Horror games [6]. The sound played changes according to
the position of the player in a room and according to the relative distance to the
level objective. As for the sound event selection, the system builds knowledge of
which sound was already played and removes these from the possible choices
for the next audio clips. At the moment of publication, the Sonancia system is
said to be extremely reliant on sound files but was still not fully ported into Unity.
The authors also note that for future work more analysis is required for the
intensity to map results more accurately and classify emotions experienced by
the player. This task would use a model widely accepted in the literature, the
circumplex model, classifying emotions using a pair of values that assess the
positiveness and activeness of an emotion [6], [7].

Challenges in Game Music

As mentioned before, there are two main challenges while composing music for
games. It needs to both adapt to the user actions and vary each time it plays to
enable extended replayability. Considering this, some games already make use
of a stem system. A stem is a short musical segment that can be combined with
others, usually triggered by parameters or context, providing in many cases
additional layers of sound. For example, in Red Dead Redemption, if the player
starts to get chased an instrument starts playing and an additional one starts if
the chase escalates to a shootout [8]. To accomplish this, all the stems were
recorded at the same BPM and tonality. To tackle the replayability issue, Collins
provides some input on how it is possible to diversify sound playback. The
suggestions are as following: Variable Tempo, Variable Pitch, Variable Rhythm,
Variable Volume, Variable Timbre, Variable Melodies, Variable Harmony,
Variable Mixing, Variable Form (open form), Variable Form (branching
parameter-based music). The Red Dead Redemption stem system can be
considered a Variable Form (open form) since any number of stems can be
connected seamlessly, as can be seen in Table 1 [4], [8].

Stem Idle Pastoral Suspense Dramatic Chase Chase Gunfight Gunfight
Intense Intense
1 X X X
2 X X X X X
3 X
4 X
5 X X
6 X
7 X
8 X X

Table 1 - Red Dead Redemption Stem System Triggers [8].



Sonification Techniques

There are five techniques that can be considered widely accepted in the field of
sonification [1], [2]. These consist of Audificaton, Auditory Icons, Earcons,
Parameter Mapping Sonification and Model-Based Sonification [1], [2], [9]. The
first technique, Audification, consists on the action of making a sound audible
enough to interpret it and draw information from it. An example would be the Heart
Rate measurements of the Photoplethysmograph (PPG) machines, by just
increasing the amplitude of the sound. Auditory Icons are used to provide
information when the user executes an action like taking a picture with a
smartphone, in which the latter produces sound only for feedback purposes.
Earcons are very like Auditory Icons but are sounds that the users have a
connection to, or they set them up themselves. Parameter Mapping Sonification
consists on mapping data values to acoustic features of a sound and finally,
Model-Based Sonification uses data to build a system where the user can trigger
the sounds of objects, like the strings of a musical instrument.

Sound Parameters

This section focuses on the analysis of the sound features, elaborating on how
certain aspects of sound can be changed and in what way. The features
presented here are not purely physical features, but more high-level ones. There
are numerous sound features, but the ones that are widely used to describe audio
are Pitch, Timbre, Sound Level and Tempo [1]. Depending on the type of
information to be represented one can also make use of the Spatial aspect.

Pitch

Pitch, as commonly referred to, is determined by the frequency of a sound, being
then perceived as low or high. It is possible to represent pitch as a logarithmic
function with each note having an associated frequency in Hertz (Hz) [10]. A sub
feature of Pitch is the Pitch Range, being the range of the Pitch over a segment
of a sound or music. It is usually quantified as Small or Wide.

Timbre

In cases where two instruments play the same note, Timbre is the sound feature
that allows the listener to identify the instruments as different. As such, it is the
characteristic that helps to distinguish and separate instruments while using the
same Pitch. It is usually classified as Bright, Soft, Sharp, Warm and Round,
among others [11], [12].Timbre is a high-level characteristic, being composed of
several others such as the Spectral Power and Spectral Flux and is heavily
influenced by the sound envelope.

Sound Level

Referring to the Sound Pressure Level, can be measured in decibels (dB). It can
be mistaken for Loudness, which is the Amplitude of a sound wave
(complementing the Pitch). Sound level can roughly be considered a synonym of
“Volume”.



Tempo
Is a measurement on how fast or slow a certain sound or music is, usually
represented as Beats Per Minute (BPMs).

Data Transmission Through Sound

Sound is a way of transmitting data. As presented in [1], sound can also be used
to map physical quantities and the authors conducted a study to find the use
cases of musical features in the mappings of dimensions to sound. The findings
of the study include Table 2, where a physical property is described utilizing
sound features, ordered by use frequency. This suggests that some tendencies
exist in the choice of audio, in terms of features, for relaying information.

Physical Property

Sound Features (By usage frequency)

Location Spatialization, Pitch, Pitch Range, Instrumentation,
Duration, Sequential Position

Distance Loudness, Pitch, Duration

Motion Pitch, Spatialization, Doppler Effect, Loudness, Duration

Density Pitch, Duration, Loudness

Orientation Pitch, Spatialization

Velocity Pitch, Tempo, Brightness, Loudness

Size Pitch, Duration

Spectral Signal | Pitch, Spectral Power, Loudness

Energy Distribution

Pressure Pitch

Energy Loudness

Acceleration

Pitch, Loudness

Event Rate Tempo
Temperature Pitch
Signal Amplitude Loudness
Signal Frequency Pitch
Color Luminosity Loudness
Mass Pitch

Table 2 - Mapping of Physical Quantities to Sound Features by frequency of usage [1].



As an example, for representing Distance, the Loudness feature was used. Since
the listener can infer from real-world experience that when an object is closer to
the listener it is also louder, it makes a successful sonification. From Table 2 it is
possible to see that the most recurred sound features for the description of
quantification of physical properties are the Pitch, Loudness and Duration.
Particularly, Pitch appears in 12 out of the 17 physical properties, making it the
most used musical feature throughout the several projects analyzed. During this
work, the features mentioned will be some of the most explored.

Classification of Emotions

One of the existing definitions for emotions describes them as the mental states
of the person, causing “bodily disturbances” and then perceiving the latter as
emotions [13]. However, the definition of what is an emotion has still not achieved
a general agreement among the scientific community [14], [15]. The emotion
definition varies, mostly from the determining factor on what impacts the
recognition of an emotion such as the culture and experience.

Considering emotions as a type of information, these would have the possibility
to be transmitted through sound. Some examples can be found in the
cinematographic industry, having music purposely composed for a specific
reason, or movie [16]. However, due to the subjectivity associated to the
definition of this concept and the variety of ideas linked to it, the recognition of
emotion needed for said purposes carries the same problem as the definition.
Russel, in [7], attempted to bypass this challenge by introducing a way to classify
emotions using a model composed of two axis, called the Circumplex Model of
Affect.

Circumplex Model of Affect

Regarding the representation of emotions, the widely-accepted model is the
Circumplex Model (see Figure 1). This model is not limited to a sound/music
context, being used as a standard to emotion representation and comparison of
different individuals and their corresponding states. Each emotion is represented
by a pair of values, Valence on the X axis and Arousal on the Y axis [7]. Valence
shows how positive or negative the emotion is, ranging from pleasant to
unpleasant. Arousal describes the level of engagement that a person felt towards
a certain stimulus, ranging from low activation to high activation. Using a pair of
values of Valence and Arousal, it is possible to place an emotion on a 2D space
composed by four quadrants. The four quadrants are the positive Valence and
positive Arousal, negative Valence and positive Arousal, negative Valence and
negative Arousal, and positive Valence and Negative Arousal.



negative arousal positive
arousal arousal

aroused

excited

unhappy. happy | valence

Figure 1 - Circumplex Model [17].

There has been some debate about other ways of representing emotions,
particularly about using three-axis for representation and how it could improve
the emotion labelling for music and sound. One of the studies that tries to observe
the differences between such a model and the Circumplex Model replaces the
Arousal axis for Activity and adds a third axis that according to the authors allow
for a better representation of emotions such as Fear and Anger, that would
otherwise be almost indistinguishable using the Circumplex Model [18]. However,
these models are still not widely accepted due to the discussion about the
introduction of the third axis, as well as what it should represent. An example of
such model is presented in Figure 2, with the third axis representing Tension.

*  Anger : RS .
+ Fear ) ’ .. *o V&*;ﬁ
3| © Happy A Yy * o
+ Sad L eMgt ;:':‘ ‘p 3
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Figure 2 - Example of a three-axis representation of emotions [18].



Mapping Valence and Arousal

A popular way of attributing pairs of Valence and Arousal values is to make use
of the Self-Assessment Manikin (SAM), visible on Figure 3 [19]. This technique
consists on using scales with figures representing each of the Circumplex’s
dimensions, making it a fast to apply solution for emotion rating. A third scale is
also available under the name Dominance.

Figure 3 - SAM scales: Valence, Arousal and Dominance (Top to Bottom) [19].

In a research study conducted based on automatic playlist generation using
affective computing, the authors attempted to create a playlist of music based on
the emotion of the user using psychophysiological data. This was to be acquired
from various physiological sensors, ranging from Photoplethysmograph (PPG) to
Electrodermal Activity (EDA). This would result in psychophysiological indices
such as heart rate and skin conductance to predict the current emotion of the
listener [20]. Some studies also show that Heart Rate and EDA correlate to the
Arousal levels of the user [21].

Sound Features and Emotions

There have been studies that tried to observe patterns in terms of features and
musical characteristics on music gathered that had been previously labelled. One
of such studies reports the findings of the most common characteristics found in
Happiness, Sadness, Fear, Anger and Tenderness [22], [23].



Emotion Musical Feature

Happiness Fast tempo, small tempo variability, major mode, simple and consonant
harmony, medium-high sound level, small sound level variability, high pitch,
much pitch variability, wide pitch range, ascending pitch, perfect 4th and 5th
intervals, rising micro intonation, raised singer’s formant, staccato
articulation, large articulation variability, smooth and fluent rhythm, bright
timbre, fast attacks, small timing variability, sharp contrasts between ‘long’
and ‘short’ notes, medium-fast vibrato rate, medium vibrato extent, micro-
structural regularity

Sadness Slow tempo, minor mode, dissonance, low sound level, moderate sound level
variability, low pitch, narrow pitch range, descending pitch, ‘flat’ (or falling)
intonation, small intervals (e.g. minor 2nd), lowered singer’s formant, legato
articulation, small articulation variability, dull timbre, slow attacks, large timing
variability (e.g. rubato), soft contrasts between ‘long’ and ‘short’ notes,
accelerando, medium-fast vibrato rate, large vibrato extent, micro-structural
irregularity

Anger Fast tempo, small tempo variability, minor mode, atonality, dissonance, high
sound level, small loudness variability, high pitch, small pitch variability,
ascending pitch, major 7th and augmented 4th intervals, raised singer's
formant, staccato articulation, moderate articulation variability, complex
rhythm, sudden rhythmic changes (e.g. syncopations), sharp timbre,
spectral noise, fast attacks/decays, small timing variability, accents on
tonally unstable notes, sharp contrasts between ‘long’ and ‘short’ notes,
accelerando, medium-fast vibrato rate, large vibrato extent, micro-structural
irregularity

Fear Fast tempo, large tempo variability, minor mode, dissonance, low sound
level, large sound level variability, rapid changes in sound level, high pitch,
ascending pitch, wide pitch range, large pitch contrasts, staccato articulation,
large articulation variability, jerky rhythms, soft timbre, very large timing
variability, pauses, soft attacks, fast vibrato rate, small vibrato extent, micro-
structural irregularity

Tenderness Slow tempo, major mode, consonance, medium-low sound level, small
sound level variability, low pitch, fairly narrow pitch range, lowered singer's
formant, legato articulation, small articulation variability, slow attacks, soft
timbre, moderate timing variability, soft contrasts between long and short
notes, accents on tonally stable notes, medium fast vibrato, small vibrato
extent, micro-structural regularity

Table 3 - Observed features per emotion [22].

Sound Features and Valence-Arousal Models

In a study conducted by Gomez and Danuser in [24], 31 participants were asked
to listen to a total of 32 excerpts of 30 seconds each, 16 excerpts being noise
and the remaining 16 were taken from instrumental passages of Western music.
SAM was used to classify each of the excerpts in both Valence and Arousal. For
each of the participants the authors fitted a curve trying to predict the value of a
musical feature based on a given value of Valance and Arousal. The curves are
described by the equation:

Y=a+ pvV+PLaA+pvaVxA+E 1)

where Y is the musical feature, the B are the coefficients for the respective feature
for Valence and Arousal, V and A are the values of Valence and Arousal and E
consists of the error. The results can be found on Table 4, presenting the
uncovered coefficients for each dimension, organized by musical feature [24].
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Valence Arousal Valence * Arousal

y:astfra; Constant Estimgte Estimgte estimgte
Coefficient Coefficient Coefficient
Sound Intensity 58.40 0.50 2.14 -0.18
Tempo 1.20 0.10 0.43 -
Rhythm 2.23 0.16 0.35 -0.05
Accentuation 2.24 0.00 0.46 -
Rhythmic 7.92 10.26 0.33 :
Articulation
Melodic 2.69 0.12 0.00 :
Direction
Pitch level 4.54 0.05 -0.07 -
Pitch range 2.17 0.22 0.37 -0.05
Mode 6.40 -0.27 -0.71 0.11
Complexity 4.17 -0.19 0.07 -
Consonance 5.80 0.01 -0.37 0.04

Table 4 - Results of Curve Fitting [24].

Through a coefficient analysis it is possible to observe that Sound Intensity is the
feature that possesses the highest impact on both Valence and Arousal, having
the highest absolute values on each of the categories. It is followed by Mode
(absolute value) in terms of Valence and Arousal, and, can be stated that together
with Pitch Range and Rhythmic Articulation, these are the features that exert
more influence while listening to distinct types of sounds. Furthermore, a study
that analyzes the automatic recognition of emotion caused by audio events found
that Arousal is highly correlated to Loudness, while the latter is negatively
correlated to Valence. Valence correlates negatively to Spectral Flux and
especially to Spectral Harmonicity. It is also mentioned that loud sounds are
unpleasant [25].

Prediction of Valence and Arousal in Sound and Music

Researchers have been trying to predict not the features of a song, but the
emotion perceived by the listeners through a certain audio event. Although there
is a lot of uncertainty on the ongoing research, machine learning algorithms are
the preferred approach and usually have as inputs some signal component
values. Acquiring the ground-truth and a baseline to compare the outputs of such
approaches can be hard to attain, hence some musical platforms ask the listeners
to tag the songs according to the perceived emotion of the user [26].

Yang et al. tackled the problem by exploring regression algorithms, through
Multiple Linear Regressions (MLR), Support Vector Regressions (SVR) and
AdaBoost.RT (BoostR). Out of the three regression models trained SVR achieved
the best results, having a R? value superior in both Valence and Arousal, with
28.1% and 58.3% respectively [27]. Chin et al. proposed in 2017 to use a
probability density function (PDF) over the Valence-Arousal space to identify a
possible location of an emotion rather than an accurate value for each dimension,
trying to minimize the subjectivity of the task. This showed the challenge of
handling a big quantity of data and how it impacted the results, comparing the
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obtained values for two different datasets, mostly differing in the number of
samples [28]. Aljanaki, Soleymani, and Yang proposed a dataset to use for the
exploration of techniques to predict emotions, composed by three datasets, each
one presenting values for several signal features and Valence and Arousal. In
total, this dataset is composed of 1802 song excerpts, following an established
protocol for the data collection. Other information is available online such as the
free emotion label, provided by the participants, although contact with the authors
is required [29], [30].
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Chapter 3: Feature Extraction and Modelling

Much of the work presented on this thesis is about the prediction of emotions in
sound and how to provide a way to use it in games. As a result, the first part of
this chapter focuses on the prediction algorithms used and the second delves on
the benchmarking of the models obtained using those methods.

As established before, the current methods for predicting Valence and Arousal
are quite unsuccessful in their tasks, achieving very low prediction rates
especially while trying to model the Valence dimension. This serves as an
opportunity to improve on those results, by following another approach in terms
of algorithms. By doing so, the goal of this chapter is to pinpoint the emotion that
a sound file would produce, predicting both dimensions of the Circumplex Model,
Valence and Arousal.

Approaches

Using the DEAM dataset, that contains continuous values for physical acoustic
features and Valence and Arousal SAM values for several excerpts, the goal was
to identify how to correctly replicate (for existing datasets) and produce new
values for both Circumplex dimensions (new datasets). Since there was existing
accessible data, the chosen algorithms were supervised learning algorithms.
Furthermore, since the resulting models will have to predict continuous values,
this consisted of a regression problem. A total of twenty-two models were trained
using the tools available from MATLAB and compared for the end results of this
chapter. These models could be grouped into four categories, namely Linear
Regressions (2), Support Vector Machines (6), Gaussian Process Regressions
(4) and Atrtificial Neural Networks (10).

Linear Regressions

Linear Regressions are a set of supervised learning algorithms, used for
predicting datasets that follow a pattern, and, like all other regression algorithms,
their objective is to describe a relationship between a set of input and output
variables. The result consists of fitting a straight line through the data, following
the trend of the set. These algorithms are usually evaluated using the R? value,
ranging from zero to one, effectively giving an approximation of how much of the
dataset the model can predict. For example, a R? value of 0.41 would mean that
the model can predict 41% of the data it was exposed to. Another meaningful
value is the RMSE, Root Means Square Error, a squared average of how much
the predictions are distant from the original values. This indicator does not have
a standard numerical value since it depends on the dat